YT14-HDU-满足(a^2+b^2 +m)/(ab)的(a,b)有多少

本文介绍了一种算法,用于解决特定数学问题:给定两个整数n和m,计算满足条件0<a<b<n且(a^2+b^2+m)/(ab)为整数的整数对(a,b)的数量。该算法通过双重循环遍历所有可能的a和b值来解决问题,并提供了一个C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

Given two integers n and m, count the number of pairs of integers (a,b) such that 0 < a < b < n and (a^2+b^2 +m)/(ab) is an integer.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

You will be given a number of cases in the input. Each case is specified by a line containing the integers n and m. The end of input is indicated by a case in which n = m = 0. You may assume that 0 < n <= 100.

Output

For each case, print the case number as well as the number of pairs (a,b) satisfying the given property. Print the output for each case on one line in the format as shown below.

Sample Input

1

10 1
20 3
30 4
0 0

Sample Output

Case 1: 2
Case 2: 4
Case 3: 5


代码如下:

#include <iostream>
using namespace std;
int main()
{
    int T,n,m;
    int a,b;
    int k,num;
    cin>>T;
    while (T--)
    {
        k=1;
        while (cin>>n>>m)
        {
            num=0;
            if(n==0&&m==0)
                break;
            for (b=1; b<n; b++)
            {
                for (a=1; a<b; a++)
                {
                    if ((a*a+b*b+m)%(a*b)==0)          //判断是否为整数
                        num++;
                }
            }
            cout<<"Case "<<k<<": "<<num<<endl;
            k++;
        }
        if (T>0)                                     //题目要求,每个输出块之间有一个空白,但最后一个输出块后面没有
        cout<<endl;
    }
    return 0;
}

解题思路:

题目大意是输入N,M,求(a,b)(0<a<b<N)能满足(a^2+b^2 +M)/(ab)是一个整数的个数。这道题唯一的难点就是在于输出块之间的空白,再有就是输出格式问题,我又一次给大小写坑了。。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值