bfs

本文介绍了一种使用广度优先搜索(BFS)算法解决国际象棋中骑士从一个位置到另一个位置的最短移动路径问题的方法。通过定义骑士的合法移动方式并采用BFS遍历所有可能的移动路径,可以有效地找出两点间的最少移动次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find theshortest closed tour of knight moves that visits each square of a given set of n squares on a chessboardexactly once. He thinks that the most difficult part of the problem is determining the smallest numberof knight moves between two given squares and that, once you have accomplished this, finding the tourwould be easy.Of course you know that it is vice versa. So you offer him to write a program that solves the”difficult” part.Your job is to write a program that takes two squares a and b as input and then determines thenumber of knight moves on a shortest route from a to b.

Input

The input file will contain one or more test cases. Each test case consists of one line containing twosquares separated by one space. A square is a string consisting of a letter (a..h) representing the columnand a digit (1..8) representing the row on the chessboard.

Output

For each test case, print one line saying ‘To get from xx to yy takes n knight moves.’.

Sample Input

e2 e4

a1 b2

b2 c3

a1 h8

a1 h7

h8 a1

b1 c3

f6 f6

Sample Output

To get from e2 to e4 takes 2 knight moves.

To get from a1 to b2 takes 4 knight moves.

To get from b2 to c3 takes 2 knight moves.

To get from a1 to h8 takes 6 knight moves.

To get from a1 to h7 takes 5 knight moves.

To get from h8 to a1 takes 6 knight moves.

To get from b1 to c3 takes 1 knight moves.

To get from f6 to f6 takes 0 knight moves.

题意:从一点走到另一点,a-e代表列,1-8代表行,输入两个坐标,求从第一个坐标走到第二个坐标的步数。走法按罗马象棋走,八个方向,只能走“L”形,即上走两步,左走一步等八个方向。bfs

#include<cstdio>
#include<cstring>
#include<math.h>
#include<algorithm>
#include<queue>
#include<vector>
#include<iostream>
#include<map>
#include<queue>
#define mes(a,b) memset(a,b,sizeof(a))
#define rep(i,m,n) for(i=m;i<=n;i++)
typedef long long ll;
using namespace std;
int max3(int a,int b,int c){return max(max(a,b),c);}
ll min3(ll a,ll b,ll c){return min(min(a,b),c);}
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=1e6+5;
const int mod=1e9+7;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll inv(ll b){if(b==1)return 1; return (mod-mod/b)*inv(mod%b)%mod;}
ll fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n%mod;n=n*n%mod;}return r;}
ll Fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n;n=n*n;}return r;}

char s1[4],s2[4];
int vis[10][10];
int dir[8][2] = {-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,-2,-2,-1};
int endx,endy;
struct node
{
    int x,y,step;
};
int bfs()
{
    queue<node>q;
    node p,next,r;
    p.x=s1[0]-'a';
    p.y=s1[1]-'1';
    p.step=0;
    endx=s2[0]-'a';
    endy=s2[1]-'1';
    q.push(p);
    memset(vis,0,sizeof(vis));
    vis[p.x][p.y]=1;
    while(!q.empty())
    {
        r=q.front();
        q.pop();
        if(r.x==endx&&r.y==endy)
        {
            return r.step;
        }
        int i;
        for(i=0;i<8;i++)
        {
            next.x=r.x+dir[i][0];
            next.y=r.y+dir[i][1];
            if(next.x==endx&&next.y==endy)
                return r.step+1;
            if(next.x>=0&&next.x<8&&next.y>=0&&next.y<8&&!vis[next.x][next.y])
            {
                next.step=r.step+1;
                vis[next.x][next.y]=1;
                q.push(next);
            }
        }
    }
    return 0;
}
int main()
{
    while(scanf("%s%s",s1,s2)!=EOF)
    {
        int step=bfs();
        printf("To get from %s to %s takes %d knight moves.\n",s1,s2,step);
    }


    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值