hdu 2682 Tree 最小生成树~~~~水题一枚,,用到了筛法求素数,我竟然在格式上面PE了两次!!

本文讨论了如何在给定的城市集合中,通过连接质数幸福值的城市以达到最小化总连接成本的目的,提供了求解算法及实例分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tree

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1754    Accepted Submission(s): 509


Problem Description
There are N (2<=N<=600) cities,each has a value of happiness,we consider two cities A and B whose value of happiness are VA and VB,if VA is a prime number,or VB is a prime number or (VA+VB) is a prime number,then they can be connected.What's more,the cost to connecte two cities is Min(Min(VA , VB),|VA-VB|).
Now we want to connecte all the cities together,and make the cost minimal.
 

Input
The first will contain a integer t,followed by t cases.
Each case begin with a integer N,then N integer Vi(0<=Vi<=1000000).
 

Output
If the all cities can be connected together,output the minimal cost,otherwise output "-1";
 

Sample Input
  
2 5 1 2 3 4 5 4 4 4 4 4
 

Sample Output
  
4 -1
 

Author
Teddy
 
题目给的输出样例很具有迷惑性啊!!竟然只有一个换行,o(╯□╰)o
好啊,是我笨
看代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MAX 650
#define INF 1000000000

int graph[MAX][MAX] , value[MAX];
bool NotPrime[2001000] ;
int prim(int n)
{
	int lowCost[MAX];
	bool visited[MAX] ;
	memset(visited,false,sizeof(visited)) ;
	int sum = 0 ;
	for(int i = 0 ; i < n ; ++i)
	{
		lowCost[i] = graph[0][i] ;
	}
	visited[0] = true ;
	for(int i = 0 ; i < n-1 ; ++i)
	{
		int index = -1 , min = INF ;
		for(int j = 0 ; j < n ; ++j)
		{
			if(!visited[j] && lowCost[j]<min)
			{
				index = j ;
				min = lowCost[j] ;
			}
		}
		if(index == -1)
		{
			if(i < n-1)
			{
				return INF ;
			}
			break ;
		} 
		sum += min ;
		visited[index] = true ;
		for(int j = 0 ; j < n ; ++j)
		{
			if(!visited[j] && lowCost[j] > graph[index][j])
			{
				lowCost[j] = graph[index][j] ;
			}
		}
	}
	return sum ;
}

int min(int a , int b)
{
	return a>b?b:a ;
}

int main()
{
	int t ;
	NotPrime[0] = NotPrime[1] = true ;
	for(int i = 2 ; i < 2001000/2 ; ++i)
	{
		for(int j = 2 ; j*i < 2001000 ; ++j)
		{
			NotPrime[j*i] = true ;
		}
	}
	scanf("%d",&t);
	while(t--)
	{
		int n ;
		scanf("%d",&n);
		for(int i = 0 ; i < n ; ++i)
		{
			scanf("%d",&value[i]) ;
		}
		for(int i = 0 ; i < n ; ++i)
		{
			for(int j = 0 ; j < i ; ++j)
			{
				if(!NotPrime[value[i]] || !NotPrime[value[j]] || !NotPrime[abs(value[i]+value[j])])
				{
					graph[i][j] = graph[j][i] = min(min(value[i],value[j]),abs(value[i]-value[j]))  ;
				}
				else
				{
					graph[i][j] = graph[j][i] = INF ;
				}
			}
			graph[i][i] = 0 ;
		}
		int sum = prim(n) ;
		if(sum == INF)
		{
			puts("-1");
		}
		else
		{
			printf("%d\n",sum) ;
		}
	}
	return 0 ;
}

与君共勉
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值