hdu 4786 Fibonacci Tree 生成树 属于需要仔细想的题目,对图必须非常熟。。今天的首A,太堕落了

探讨了如何在给定图中寻找一棵生成树,使得该树中的白色边数量为Fibonacci数。通过实现特定算法,判断是否能形成满足条件的生成树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fibonacci Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2519    Accepted Submission(s): 804


Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
 

Input
  The first line of the input contains an integer T, the number of test cases.
  For each test case, the first line contains two integers N(1 <= N <= 10 5) and M(0 <= M <= 10 5).
  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
 

Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
 

Sample Input
  
2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
 

Sample Output
  
Case #1: Yes Case #2: No
 
这道题如果不仔细想的话,,还是挺难的,首先题目的意思是通过图生成一课树,判断生成的树中白色结点的个数恰好是Fibonacci 数,
关于这道题的思路,请看这篇博客: http://blog.youkuaiyun.com/dyx404514/article/details/16371907#cpp
博主的证明的思路不是太通顺,,你看到结论后,应该自己去思考一下是不是这样

代码:
#include <stdio.h>
#define MAX 101000
struct Edge{
	int x , y , c ;
}edge[MAX];
int f[MAX] ;
bool fib[MAX] ;
int find(int x)
{
	int r = x ;
	while(r != f[r])
	{
		r = f[r] ;
	}
	int temp ;
	while(x != r)
	{
		temp = f[x] ;
		f[x] = r ;
		x = temp ;
	}
	return r ;
}

int count(int n , int m , int c)
{
	for(int i = 0 ; i <= n ; ++i)
	{
		f[i] = i ;
	}
	int sum = 0 ;
	for(int i = 0 ; i < m ; ++i)
	{
		if(edge[i].c != c)
		{
			int x = find(edge[i].x) , y = find(edge[i].y) ;
			if(x != y)
			{
				sum ++ ;
				f[x] = f[y] ;
			}
		} 
		
	}
	return sum ;
}

int main()
{
	int t , c = 1;
	int a = 1 , b = 0;
	while(a+b < MAX)
	{
		fib[a+b] = true ;
		int t = b ;
		b = a ;
		a = t+a ;
	}
	scanf("%d",&t);
	while(t--)
	{
		int n , m ;
		scanf("%d%d",&n,&m) ;
		for(int i = 0 ; i < m ; ++i)
		{
			scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].c) ;
		}
		printf("Case #%d: ",c++);
		int sum = count(n,m,2) ;
		if(sum < n-1)
		{
			puts("No") ;
			continue ;
		}
		int max = count(n,m,0);
		int min = n-1-count(n,m,1) ;
		bool flag = false ;
		for(int i = min ; i <= max ; ++i)
		{
			if(fib[i] == true)
			{
				flag = true ;
				break ;
			}
		}
		if(flag)
		{
			puts("Yes");
		}
		else
		{
			puts("No") ;
		}
	}
	return 0 ;
}

与君共勉
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值