容器中的大模型(二) | 利用大模型,使用自然语言查询SQL数据库

本文介绍了如何在Docker容器中通过LangChain和Ollama框架利用大型语言模型实现自然语言到SQL的转换,展示了如何构建Text2SQL流程,提升数据库查询效率并提供用户友好的交互方式。

aa048035eb5b48963ca640e098815fee.jpeg

作者:宋文欣,智领云科技联合创始人兼CTO

01 简介

随着人工智能技术的发展,尤其是自然语言处理(NLP)和机器学习的进步,使得将自然语言转换为结构化查询成为可能。这种技术的应用场景广泛,从简化数据库查询操作到提高数据分析的效率,都有着重要的实际价值。文章通过介绍 LangChain 和 Ollama 框架,提供了一种在本地或云服务器上部署和运行 LLMs 的方法,使得开发者和最终用户都能够轻松地实现自然语言到SQL查询的转换。

本文旨在向读者展示如何在Docker容器环境中利用大型语言模型(LLMs)构建一个端到端的Text2SQL 流程。通过这一流程,用户可以以自然语言提出问题,系统则自动将这些问题转化为SQL 查询语句,进而在关系型数据库上执行,从而获取所需的数据,实现从自然语言问题到关系型数据库上的 SQL 查询的转化。

02 技术背景

在本文中,我们将深入探讨两个关键技术框架:LangChain 和 Ollama,它们是构建端到端Text2SQL 流程的基础。这些框架使得在 Docker 容器中部署和运行大型语言模型(LLMs)成为可能,从而实现了从自然语言到SQL查询语句的高效转换。

LangChain框架

LangChain 提供了SQL 查询链和 SQL 代理的核心功能。SQL 查询链负责将用户的自然语言查询转换为 SQL 语句,可以通过定制和扩展来适应不同的应用场景。SQL 代理则提供了高度的灵活性和定制性,允许开发者根据具体的任务和数据结构进行优化,以实现更准确和高效的自然语言查询转换。这两个组件共同为关系型数据库提供了一个易用且便捷的自然语言查询界面。

Ollama框架

Ollama 框架则提供了与 OpenAI 兼容的接口,使得在本地环境中部署和运行 LLMs 变得简单。它允许应用程序在 OpenAI 后端和本地运行的 LLMs 之间进行无缝切换,这种灵活性使得开发者可以根据需求选择最合适的部署方式。无论是在云端还是本地环境中,Ollama 都能够帮助开发者轻松实现模型的部署和运行。

这两个框架的结合,为 Text2SQL 任务提供了坚实的技术基础。通过 LangChain 的 SQL 查询链和 SQL 代理,以及 Ollama 的本地 LLM 部署功能,开发者能够构建出能够理解和执行自然语言查询的应用程序。这些技术不仅提高了数据库查询的效率,也为非技术用户提供了更加友好的交互方式,使得他们能够更容易地从数据库中获取信息。

03 成果展示

Text2SQL 应用展示了自然语言处理技术在数据库查询领域的强大潜力。它不仅简化了查询过程,还通过提供详细的推理跟踪,让用户能够更加深入地参与到查询的每一个步骤中。这种创新的应用无疑将推动数据库查询技术的发展,为用户提供更加智能和个性化的服务。

通过应用,用户可以直观地了解数据库的结构和内容,并通过“DATABASE Information”功能浏览每个表的示例数据。为用户提供了一个清晰的视图,帮助他们更好地构建查询。此外,用户界面提供了两种模式选择:“ChatGPT”和“Local_LLM”,让用户能够根据自己的需求和偏好进行查询。为了增强用户体验,Text2SQL 还提供了 “LLM 推理跟踪”功能。

Text2SQL推理

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值