注解
什么是注解
- Annotation 是从JDK5.0开始引入的新技术
- Annotation的作用:
- 不是程序本身,可以对程序做出解释(这一点和注释(comment)没什么区别)
- 可以被其他程序(比如:编译器等)读取
- Annotation的格式:
- 注解是以”@注释名“在代码中存在的,还可以添加一些参数值,例如:@SuppressWarnings(value="unchecked")
- Annotation在那里使用
- 可以附加在package、class、method、field等上面,相当于给他们添加了额外的辅助信息,我们可以通过反射机制编程实现这些元数据的访问
内置注解
@Override:定义在 java.lang.Override 中,此注释只适用于修饰方法,表示一个方法声明打算重写超类中的另一个方法声明
@Deprecated:定义在 java.lang.Deprecated 中,此注释可以用于修饰方法、属性、类,表示不鼓励程序员使用这样的元素,通常是因为它很危险或者存在更好的选择
@SuppressWarnings:定义在 java.lang.SuppressWarnings 中,用来抑制编译时的警告信息
- 与前两个注释有所不同,你需要添加一个参数才能正确使用,这些参数都是已经定义好的,我们选择性的使用就好啦
- @SuppressWarnings("all")
- @SuppressWarnings("unchecked")
- @SuppressWarnings(value={"unchecked", "deprecation"})
- 等等......
package com.ling.annotation;
import java.util.ArrayList;
import java.util.List;
// 什么是注解
public class Test01 {
// @Override 重写的注解
@Override
public String toString() {
return super.toString();
}
// @Deprecated 不推荐程序员使用,但是可以使用,或者存在更好的方式
@Deprecated
public static void test() {
System.out.println("Deprecated");
}
@SuppressWarnings("all")
public static void test01() {
List list = new ArrayList<>();
}
public static void main(String[] args) {
test();
}
}
元注解
元注解的作用就是负责注解其他注解,Java定义了4个标准的meta-annotation类型,它们被用来提供对其他annotation类型作说明
这些类型和它们所支持的类在java.lang.annotation包中可以找到(@Target、@Retention、@Documented、@Inherited)
- @Target:用于描述注解的使用范围(即:被描述的注解可以用在什么地方)
- @Retention:表示需要在什么级别保存该注释信息,用于描述注解的生命周期
- (SOURCE<CLASS<RUNTIME)
- @Document:说明该注解将被包含在javadoc中
- @Inherited:说明子类可以继承父类中的该注解
package com.ling.annotation;
import java.lang.annotation.*;
// 测试元注解
@MyAnnotation
public class Test02 {
@MyAnnotation
public void test(){
}
}
// 定义一个注解
// @Target:描述注解能够作用的位置
@Target(value = {ElementType.METHOD, ElementType.TYPE})
// @Retention:描述注解的生命周期
// RUNTIME>CLASS>SOURCE
@Retention(value = RetentionPolicy.RUNTIME)
// @Documented:描述注解被抽取到javadoc中
@Documented
// @Inherited:描述注解具有继承性
@Inherited
@interface MyAnnotation{
}
自定义注解
使用 @interface 自定义注解时,自动挤成了java.lang.annotation.Annotation接口
分析:
- @interface 用来声明一个注解,格式:public @interface 注解名(定义内容)
- 其中的每一个方法实际上是声明了一个配置参数
- 方法的名称就是参数的名称
- 返回值类型就是参数的类型(返回值只能是基本类型 Class、String、enum)
- 可以通过default来声明参数的默认值
- 如果只有一个参数成员,一般参数名为value
- 注解元素必须要有值,我们定义注解元素时,经常使用空字符串、0作为默认值
package com.ling.annotation;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
public class Test03 {
// 如果在注解中定义了默认值为空,也可以显示赋值
// 如果没有默认值,我们就必须给注解赋值
@myAnnotation
public void test(){
}
@myAnnotation2("ling")
public void test2(){
}
}
@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@interface myAnnotation{
// 注解的参数:参数类型 + 参数名();
String name() default "";
int age() default 0;
int id() default -1; // 如果默认值为-1,代表不存在
String[] schools() default {"school1", "school2"};
}
@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@interface myAnnotation2{
String value(); // 如果注解只有一个参数,那么这个参数名必须为value
}
反射机制
静态 VS 动态语言
动态语言
- 是一类在运行时可以改变其结构的语言:例如新的函数、对象、甚至代码可以被引进,已有的函数可以被删除或是其他结构上的变化。通俗点说就是在运行时代码可以根据某些条件改变自身结构
- 主要动态语言:Object-C、C#、JavaScript、PHP、Python等
静态语言
- 与动态语言相对应,运行时结构不可变的语言就是静态语言。如Java、C、C++
- Java不是动态语言,但Java可以称之为“准动态语言”。即Java有一定的动态性,我们可以利用反射机制获得类似动态语言的特性。Java的动态性让编程的时候更加灵活。
Java Reflection
Reflection(反射)是Java被视为动态语言的关键,反射机制允许程序在执行期借助于Reflection API 取得任何类的内部信息,并能直接操作任意对象的内部属性及方法。
加载完类之后,在堆内存的方法区中就产生了一个Class类型的对象(一个类只有一个Class对象),这个对象就包含了完整的类的结构信息。我们可以通过这个对象看到类的结构。这个对象就像一面镜子,透过这个镜子看到类的结构,所以,我们形象的称之为:反射
Java反射机制提供的功能
- 在运行时判断任意一个对象所属的类
- 在运行时构造任意一个类的对象
- 在运行时判断任意一个类所具有的成员变量和方法
- 在运行时获取泛型信息
- 在运行时调用任意一个对象的成员变量和方法
- 在运行时处理注解
- 生成动态代理
- ……
Java反射优点和缺点
优点:
可以实现动态创建对象和编译,体现出很大的灵活性
缺点:
对性能有影响。使用反射基本上是一种解释操作,我们可以告诉JVM,我们希望做说明并且它满足我们的要求。这类操作总是慢于直接执行相同的操作。
Class类
在Object类中定义了以下的方法,此方法将被所有子类继承
public final Class getClass()
所有的方法返回值的类型是一个Class类,Object类是Java反射的源头。实际上所谓反射,从程序的运行结果来看也很好理解,即:可以通过对象反射求出类的名称
对象照镜子后可以得到的信息:某个类的属性、方法和构造器、某个类到底实现了哪些接口。对于每个类而言,JRE都为其保留一个不变的Class类型的对象。一个Class对象包含了特定某个结构(class/interface/enum/annotation/primitive type/void/[])的有关信息
- Class本身也是一个类
- Class对象只能由系统建立对象
- 一个加载的类在JVM中只会有一个Class实例
- 一个Class对象对应的是一个加载到JVM中的一个.class文件
- 每个类的实例都会记得自己是由哪个Class实例所生成
- 通过Class可以完整地的到一个类中的所有被加载的结构
- Class类是Reflection的根源,针对任何你想动态加载、运行的类,唯有先获得相应的Class对象
package com.ling.reflection;
public class Test02 {
public static void main(String[] args) throws ClassNotFoundException {
// 通过反射获取类的class对象
Class c1 = Class.forName("com.ling.reflection.User");
System.out.println(c1); // class com.ling.reflection.User
Class c2 = Class.forName("com.ling.reflection.User");
Class c3 = Class.forName("com.ling.reflection.User");
Class c4 = Class.forName("com.ling.reflection.User");
// 一个类在内存中只有一个Class对象
// 一个类被加载后,类的整个结构都会被封装在Class对象中
System.out.println(c2.hashCode()); //189568618
System.out.println(c3.hashCode()); //189568618
System.out.println(c4.hashCode()); //189568618
}
}
// 实体类 pojo entity
class User{
private int id;
private String name;
private int age;
public User() {
}
public User(int id, String name, int age) {
this.id = id;
this.name = name;
this.age = age;
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "User{" +
"id=" + id +
", name='" + name + '\'' +
", age=" + age +
'}';
}
}
Class类的常用方法
获取Class类的实例
若已知具体的类,通过类的class属性获取,该方法最为安全可靠,程序性能最高
Class clazz = Person.class;
已知将某个类的实例,调用该实例的getClass()方法获取Class对象
Class clazz = person.getClass();
已知一个类的全类名,且该类在类路径下,可通过Class类的静态方法forName()获取,可能抛出ClassNoFoundException
Class clazz = Class.forName("demo01.Student");
内置基本数据类型可以直接使用类名.Type
还可以利用ClassLoader
package com.ling.reflection;
// 测试Class的创建方式有哪些
public class Test03 {
public static void main(String[] args) throws ClassNotFoundException {
Person person = new Student();
System.out.println("这个人是:" + person.name);
// 方式一:通过类名.class获得
Class c1 = Student.class;
System.out.println(c1.hashCode()); // 793589513
// 方式二:通过对象获得
Class c2 = person.getClass();
System.out.println(c2.hashCode()); // 793589513
// 方式三:通过静态方法forName获得
Class c3 = Class.forName("com.ling.reflection.Student");
System.out.println(c3.hashCode()); // 793589513
// 方式四:基本内置类型的包装类都有一个Type属性
Class c4 = Integer.TYPE;
System.out.println(c4); // int
// 获得父类类型
Class c5 = c1.getSuperclass();
System.out.println(c5); // class com.ling.reflection.Person
}
}
class Person {
public String name;
public Person() {
}
public Person(String name) {
this.name = name;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
'}';
}
}
class Student extends Person {
public Student() {
this.name = "学生";
}
}
class Teacher extends Person {
public Teacher() {
this.name = "老师";
}
}
哪些类型可以有Class对象?
- class:外部类,成员(成员内部类、静态内部类),局部内部类,匿名内部类
- interface:接口
- []:数组
- enum:枚举
- annotation:注解@interface
- primitive type:基本数据类型
- void
package com.ling.reflection;
import java.lang.annotation.ElementType;
// 所有类型的class
public class Test04 {
public static void main(String[] args) {
Class c1 = Object.class; // 类
Class c2 = Comparable.class; // 接口
Class c3 = String[].class; // 数组
Class c4 = int[][].class; // 二维数组
Class c5 = Override.class; // 注解
Class c6 = ElementType.class; // 枚举
Class c7 = Integer.class; // 基本数据类型
Class c8 = void.class; // void
Class c9 = Class.class; // class
System.out.println(c1); // class java.lang.Object
System.out.println(c2); // interface java.lang.Comparable
System.out.println(c3); // class [Ljava.lang.String;
System.out.println(c4); // class [[I
System.out.println(c5); // interface java.lang.Override
System.out.println(c6); // class java.lang.annotation.ElementType
System.out.println(c7); // class java.lang.Integer
System.out.println(c8); // void
System.out.println(c9); // class java.lang.Class
// 只要类型与维度一样,就是同一个Class
int[] a = new int[10];
int[] b = new int[100];
System.out.println(a.getClass().hashCode()); // 189568618
System.out.println(b.getClass().hashCode()); // 189568618
}
}
Java内存分析
了解:类的加载过程
当程序主动使用某个类时,如果该类还未被加载到内存中,则系统会通过如下三个步骤来对该类进行初始化。
类的加载与ClassLoader的理解
- 加载:将class文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构然后生成一个代表这个类的java.lang.Class对象
- 链接:将Java类的二进制代码合并到JVM的运行状态之中的过程
- 验证:确保加载的类信息符合JVM规范,没有安全方面的问题
- 准备:正式为类变量(static)分配内存并设置类变量默认初始值的阶段,这些内存都将在方法区中进行分配。
- 解析:虚拟机常量池内的符号引用(常量名)替换为直接引用(地址)的过程
- 初始化:
- 执行类构造器<clinit>()方法的过程。类构造器<clinit>()方法是由编译期自动收集类中所有类变量的赋值动作和静态代码块中的语句合并产生的。(类构造器是构造类信息的,不是构造该类对象的构造器)
- 当初始化一个类的时候,如果发现其父类还没有进行初始化,则需要先触发其父类的初始化
- 虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确加锁和同步
package com.ling.reflection;
public class Test05 {
public static void main(String[] args) {
A a = new A();
System.out.println(A.m);
}
}
/*
首先加载,生成一个Class对象
然后给静态变量分配内存空间,并赋上默认值
<clinit>(){
System.out.println("A static block");
m = 300;
m = 100;
}
*/
class A {
static {
System.out.println("A static block");
m = 300;
}
static int m = 100;
public A() {
System.out.println("A constructor");
}
}
什么时候会发生类初始化
类的主动引用(一定会发生类的初始化)
- 当虚拟机启动,先初始化main方法所在的类
- new一个类的对象
- 调用类的静态成员(除了final常量)和静态方法
- 使用java.lang.reflect包的方法对类进行反射调用
- 当初始化一个类,如果其父类没有被初始化,则先会初始化他的父类
类的被动引用(不会发生类的初始化)
- 当访问一个静态域时,只有真正声明这个域的类才会被初始化。如:通过子类引用父类的静态变量,不会导致子类初始化
- 通过数组定义类引用,不会触发此类的初始化
- 引用常量不会触发此类的初始化(常量在链接阶段就存入调用类的常量池中了)
package com.ling.reflection;
// 测试类什么时候会初始化
public class Test06 {
static {
System.out.println("Test06 static block");
}
public static void main(String[] args) throws ClassNotFoundException {
// 1、主动引用
// Son son = new Son();
// 2、反射
// Class.forName("com.ling.reflection.Son");
// 不会产生类的引用的方法
// 1、调用父类的静态变量
System.out.println(Son.b);
// Test06 static blockl'l
// 2、通过数组定义类引用
// Son[] son = new Son[10];
// Test06 static block
// 3、调用类的静态常量
// System.out.println(Son.M);
// Test06 static block
// 200
}
}
class Father {
static int b = 2;
static {
System.out.println("Father static block");
}
}
class Son extends Father {
static {
System.out.println("Son static block");
m = 300;
}
static int m = 100;
static final int M = 200;
}
类加载器的作用
类加载的作用:将class文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后在堆中生成一个代表这个类的java.lang.Class对象,作为方法区中类数据的访问入口
类缓存:标准的JavaSE类加载器可以按要求查找类,但一旦某个类被加载到类加载器中,他将维持加载(缓存)一段时间。不过JVM垃圾回收机制可以回收这些Class对象
package com.ling.reflection;
public class Test07 {
public static void main(String[] args) throws ClassNotFoundException {
// 获取系统类的加载器
ClassLoader systemClassLoader = ClassLoader.getSystemClassLoader();
System.out.println(systemClassLoader); // jdk.internal.loader.ClassLoaders$AppClassLoader@36baf30c
// 获取系统类加载器的父类加载器:扩展类加载器
ClassLoader parent = systemClassLoader.getParent();
System.out.println(parent); // jdk.internal.loader.ClassLoaders$PlatformClassLoader@b4c966a
// 获取扩展类加载器的父类加载器:根加载器(Bootstrap ClassLoader)
ClassLoader parent1 = parent.getParent();
System.out.println(parent1); // null
// 测试当前类是哪个加载器加载的
ClassLoader classLoader = Class.forName("com.ling.reflection.Test07").getClassLoader();
System.out.println(classLoader); // jdk.internal.loader.ClassLoaders$AppClassLoader@36baf30c
// 测试JDK内置的类是谁加载的
ClassLoader classLoader1 = Class.forName("java.lang.Object").getClassLoader();
System.out.println(classLoader1); // null
// 如何获取系统类加载器可以加载的路径
System.out.println(System.getProperty("java.class.path"));
// 双亲委派机制
// java.lang.String
// 假设你重写String类,然后运行程序,你会发现程序并没有使用你重写的String类,而是使用JDK自带的String类
// 原因:双亲委派机制
// 根加载器 -> 扩展类加载器 -> 系统类加载器 -> 自定义类加载器
// 自下而上地去寻找,如果没有,才会使用你定义的这个
}
}
创建运行时类的对象
获取运行时类的完整结构
Field、Method、Constructor、Superclass、interface、Annotation
- 实现的全部接口
- 所继承的父类
- 全部的构造器
- 全部的方法
- 全部的Field
- 注解
- ……
package com.ling.reflection;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
// 获得类的信息
public class Test08 {
public static void main(String[] args) throws ClassNotFoundException, NoSuchFieldException, NoSuchMethodException {
Class c1 = Class.forName("com.ling.reflection.User");
User user = new User();
Class c2 = user.getClass();
// 获得类的名称
System.out.println(c1.getName());// com.ling.reflection.User 获得包名 + 类名
System.out.println(c1.getSimpleName());// User 获得类名
System.out.println(c2.getName());
System.out.println(c2.getSimpleName());
// 获得类的属性
// getField只能获得public的属性,包括父类
// getDeclaredField获得所有属性,但是不包括父类
Field[] fields = c1.getDeclaredFields();
for (Field field : fields) {
System.out.println(field);
/*
private int com.ling.reflection.User.id
private java.lang.String com.ling.reflection.User.name
private int com.ling.reflection.User.age
*/
}
// 获得指定属性的值
Field name = c1.getDeclaredField("name");
System.out.println(name);// private java.lang.String com.ling.reflection.User.name
// 获得类的方法
// getMethods()获得所有的public方法,包括父类
// getDeclaredMethods()获得所有方法,不包括父类
Method[] methods = c1.getMethods();
Method[] declaredMethods = c1.getDeclaredMethods();
for (Method method : methods) {
System.out.println("正常的:" + method);
}
/*
正常的:public int com.ling.reflection.User.getAge()
正常的:public void com.ling.reflection.User.setAge(int)
正常的:public void com.ling.reflection.User.setId(int)
正常的:public java.lang.String com.ling.reflection.User.getName()
正常的:public java.lang.String com.ling.reflection.User.toString()
正常的:public void com.ling.reflection.User.setName(java.lang.String)
正常的:public int com.ling.reflection.User.getId()
正常的:public boolean java.lang.Object.equals(java.lang.Object)
正常的:public native int java.lang.Object.hashCode()
正常的:public final native java.lang.Class java.lang.Object.getClass()
正常的:public final native void java.lang.Object.notify()
正常的:public final native void java.lang.Object.notifyAll()
正常的:public final void java.lang.Object.wait(long) throws java.lang.InterruptedException
正常的:public final void java.lang.Object.wait(long,int) throws java.lang.InterruptedException
正常的:public final void java.lang.Object.wait() throws java.lang.InterruptedException
*/
for (Method method : declaredMethods) {
System.out.println("declaredMethods:" + method);
}
/*
declaredMethods:public int com.ling.reflection.User.getAge()
declaredMethods:public void com.ling.reflection.User.setAge(int)
declaredMethods:public void com.ling.reflection.User.setId(int)
declaredMethods:public java.lang.String com.ling.reflection.User.getName()
declaredMethods:public java.lang.String com.ling.reflection.User.toString()
declaredMethods:public void com.ling.reflection.User.setName(java.lang.String)
declaredMethods:public int com.ling.reflection.User.getId()
*/
// 获得指定方法
// 因为Java中有重载,所以获取指定方法的时候要将类型也加进去,才能获取指定的方法
Method getName = c1.getMethod("getName", null);
Method setName = c1.getMethod("setName", String.class);
System.out.println("getName:" + getName); //getName:public java.lang.String com.ling.reflection.User.getName()
System.out.println("setName:" + setName); //setName:public void com.ling.reflection.User.setName(java.lang.String)
// 获得构造器
Constructor[] constructors = c1.getConstructors();
Constructor[] declaredConstructors = c1.getDeclaredConstructors();
for (Constructor constructor : constructors) {
System.out.println("constructor:" + constructor);
}
for (Constructor constructor : declaredConstructors) {
System.out.println("declaredConstructor:" + constructor);
}
// 获得指定的构造器
Constructor declaredConstructor = c1.getDeclaredConstructor(int.class, String.class, int.class);
System.out.println("指定:" + declaredConstructor); // 指定:public com.ling.reflection.User(int,java.lang.String,int)
}
}
有了Class对象,能做什么
创建类的对象
调用Class对象的newInstance()方法
- 类必须有一个无参数的构造器
- 类的构造器的访问权限要足够
思考
如果没有无参构造器就不能创建对象了吗?
只要在操作的时候明确的调用类中的构造器,并将参数传递进去之后,也可以实例化操作
步骤如下:
- 通过Class类的getDeclaredConstructor(Class ... parameterTypes)取得苯类的指定形参类型二点构造器
- 向构造器的形参中传递一个对象数组进去,里面包含了构造器中所需的各个参数
- 通过Constructor实例化对象
package com.ling.reflection;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
// 通过反射动态的创建对象
public class Test09 {
public static void main(String[] args) throws ClassNotFoundException, InstantiationException, IllegalAccessException, NoSuchMethodException, InvocationTargetException, NoSuchFieldException {
// 1. 获取Class对象
Class c1 = Class.forName("com.ling.reflection.User");
// 2. 通过Class对象创建对象
User user = (User) c1.newInstance(); // 本质时调用类类的无参构造器,如果没有无参构造器,则会报错
System.out.println(user);
// 3. 通过构造器创建对象
Constructor declaredConstructor = c1.getDeclaredConstructor(int.class, String.class, int.class);
User o = (User) declaredConstructor.newInstance(1, "张三", 20);
System.out.println(o);
// 4. 通过反射调用普通方法
User user1 = (User) c1.newInstance();
Method setName = c1.getDeclaredMethod("setName", String.class);
// invoke: 调用方法,第一个参数:对象名,第二个参数:方法中的参数
setName.invoke(user1, "李四");
System.out.println(user1.getName());
// 通过反射操作属性
User user2 = (User) c1.newInstance();
Field name = c1.getDeclaredField("name");
// 不能直接操作私有属性,我们要关闭程序的安全检测 属性和方法的setAccessible(true)都是一样的
// 设置属性可访问
name.setAccessible(true);
name.set(user2, "王五");
System.out.println(user2.getName());
}
}
调用指定的方法
通过反射,调用类中的方法,通过Method类完成
- 通过Class类的getMethod(String name, Class ... parameterTypes)方法取得一个Method对象,并设置此方法操作时所需要的参数类型
- 之后使用Object invoke(Object obj, Object[] args)进行调用,并向方法中传递要设置的obj对象的参数信息
Object invoke(Object obj, Object .. args)
- Object对应原方法的返回值,若原方法无返回值,此时返回null
- 若原方法为静态方法,此时Object obj可为null
- 若原方法形参列表为空,则Object[] args为null
- 若原方法声明为private,则需要在调用此invoke()方法前,显式调用方法对象的setAccessible(true)方法,即可访问private的方法
setAccessible
- Method和Field、Constructor对象都有setAccessible()方法
- setAccessible作用是启动和禁用访问安全检查的开关
- 参数值为true则指示反射的对象在使用时应该取消Java语言访问检查
- 提高反射的效率。如果代码中必须用反射,而该句代码需要频繁的被调用,那么请设置为true。
- 使得原本无法访问的私有成员也可以访问
- 参数值为false则指示反射的对象应该实施Java语言访问检查
性能分析
package com.ling.reflection;
import java.lang.reflect.Method;
// 分析性能问题
public class Test10 {
// 普通方式调用
public static void test01() {
User user = new User();
long startTime = System.currentTimeMillis();
for (int i = 0; i < 1000000000; i++) {
user.getName();
}
long endTime = System.currentTimeMillis();
System.out.println("普通方式调用耗时:" + (endTime - startTime) + "ms"); // 2ms
}
// 反射方式调用
public static void test02() throws Exception {
User user = new User();
Class<? extends User> aClass = user.getClass();
Method method = aClass.getMethod("getName");
long startTime = System.currentTimeMillis();
for (int i = 0; i < 1000000000; i++) {
method.invoke(user);
}
long endTime = System.currentTimeMillis();
System.out.println("反射方式调用耗时:" + (endTime - startTime) + "ms"); // 3627ms
}
// 反射方式调用(关闭Java语法访问检测)
public static void test03() throws Exception {
User user = new User();
Class<? extends User> aClass = user.getClass();
Method method = aClass.getMethod("getName");
method.setAccessible(true);
long startTime = System.currentTimeMillis();
for (int i = 0; i < 1000000000; i++) {
method.invoke(user);
}
long endTime = System.currentTimeMillis();
System.out.println("反射方式调用耗时(关闭Java语法访问检测):" + (endTime - startTime) + "ms"); // 3228ms
}
public static void main(String[] args) throws Exception {
test01();
test02();
test03();
}
}
反射操作泛型
Java采用泛型擦除的机制来引入泛型,Java中的泛型仅仅是给编译器javac使用的,确保数据的安全性和免去强制类型转换问题,但是,一旦编译完成,所有和泛型有关的类型全部擦除
为了通过反射操作这些类型,Java新增了 ParameterizedType,GenericArrayTypeTypeVariable 和 WildcardType 几种类型来代表不能被归一到Class类中的类型但是又和原始类型齐名的类型
- ParameterizedType:表示一种参数化类型,比如Collection<String>
- GenericArrayType:表示一种元素类型是参数化类型或者类型变量的数组类型
- TypeVariable:是各种类型变量的公共父接口
- WildcardType:代表一种通配符类型表达式
package com.ling.reflection;
import java.lang.reflect.Method;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.List;
import java.util.Map;
// 通过反射获取泛型
public class Test11 {
// 定义一个方法,参数为Map<String, User>和List<User>
public void test01(Map<String, User> map, List<User> list){
System.out.println("test01");
}
// 定义一个方法,返回值为Map<String, User>
public Map<String, User> test02(){
System.out.println("test02");
return null;
}
public static void main(String[] args) throws NoSuchMethodException, SecurityException {
// 获取test01方法的Method对象
Method methods = Test11.class.getMethod("test01", Map.class, List.class);
// 获取test01方法的参数类型
Type[] genericParameterTypes = methods.getGenericParameterTypes();
// 遍历参数类型
for (Type genericParameterType : genericParameterTypes) {
System.out.println(genericParameterType);
// 判断参数类型是否为ParameterizedType
if(genericParameterType instanceof ParameterizedType){
// 将参数类型转换为ParameterizedType
ParameterizedType parameterizedType = (ParameterizedType) genericParameterType;
// 获取参数类型的实际类型参数
Type[] actualTypeArguments = parameterizedType.getActualTypeArguments();
// 遍历实际类型参数
for (Type actualTypeArgument : actualTypeArguments) {
System.out.println(actualTypeArgument);
/*
java.util.Map<java.lang.String, com.ling.reflection.User>
class java.lang.String
class com.ling.reflection.User
java.util.List<com.ling.reflection.User>
class com.ling.reflection.User
*/
}
}
}
// 获取test02方法的Method对象
Method method = Test11.class.getMethod("test02", null);
// 获取test02方法的返回值类型
Type genericReturnType = method.getGenericReturnType();
// 判断返回值类型是否为ParameterizedType
if(genericReturnType instanceof ParameterizedType){
// 将返回值类型转换为ParameterizedType
ParameterizedType parameterizedType = (ParameterizedType) genericReturnType;
// 获取返回值的实际类型参数
Type[] actualTypeArguments = parameterizedType.getActualTypeArguments();
// 遍历实际类型参数
for (Type actualTypeArgument : actualTypeArguments) {
System.out.println(actualTypeArgument);
/*
class java.lang.String
class com.ling.reflection.User
*/
}
}
}
}
反射操作注解
getAnnotations
getAnnotation
练习:ORM
了解什么是ORM?
Object relationship Mapping --> 对象关系映射
- 类和表结构对应
- 属性和字段对应
- 对象和记录对应
要求:利用注解和反射完成类和表结构的映射关系
package com.ling.reflection;
import java.lang.annotation.*;
import java.lang.reflect.Field;
public class Test12 {
public static void main(String[] args) throws ClassNotFoundException, NoSuchFieldException {
Class c1 = Class.forName("com.ling.reflection.Student2");
// 通过反射获得注解
Annotation[] annotations = c1.getAnnotations();
for (Annotation annotation : annotations) {
System.out.println(annotation);
}
// 获得注解的value的值
Tableling tableling = (Tableling) c1.getAnnotation(Tableling.class);
System.out.println(tableling.value());
// 获得类中属性的注解
Field name = c1.getDeclaredField("name");
Fieldling annotation = name.getAnnotation(Fieldling.class);
System.out.println(annotation.columnName());
System.out.println(annotation.type());
System.out.println(annotation.length());
}
}
@Tableling("ling")
class Student2{
@Fieldling(columnName = "db_id", type = "int", length = 10)
private int id;
@Fieldling(columnName = "db_age", type = "int", length = 10)
private int age;
@Fieldling(columnName = "db_name", type = "varchar", length = 3)
private String name;
public Student2() {
}
public Student2(int id, int age, String name) {
this.id = id;
this.age = age;
this.name = name;
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Override
public String toString() {
return "Student2{" +
"id=" + id +
", age=" + age +
", name='" + name + '\'' +
'}';
}
}
// 类名的注解
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@interface Tableling{
String value();
}
// 属性的注解
@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@interface Fieldling{
String columnName();
String type();
int length();
}