题目介绍
描述:
现有用户-视频互动表tb_user_video_log
id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
1 | 101 | 2001 | 2021-09-24 10:00:00 | 2021-09-24 10:00:30 | 1 | 1 | 1 | NULL |
2 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:31 | 1 | 1 | 0 | NULL |
3 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:35 | 0 | 0 | 1 | NULL |
4 | 103 | 2001 | 2021-10-03 11:00:50 | 2021-10-03 10:00:35 | 1 | 1 | 0 | 1732526 |
5 | 106 | 2002 | 2021-10-02 11:00:05 | 2021-10-02 11:01:04 | 2 | 0 | 1 | NULL |
6 | 107 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:06 | 1 | 0 | 0 | NULL |
7 | 108 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:05 | 1 | 1 | 1 | NULL |
8 | 109 | 2002 | 2021-10-03 10:59:05 | 2021-10-03 11:00:01 | 0 | 1 | 0 | NULL |
9 | 105 | 2002 | 2021-09-25 11:00:00 | 2021-09-25 11:00:30 | 1 | 0 | 1 | NULL |
10 | 101 | 2003 | 2021-09-26 11:00:00 | 2021-09-26 11:00:30 | 1 | 0 | 0 | NULL |
11 | 101 | 2003 | 2021-09-30 11:00:00 | 2021-09-30 11:00:30 | 1 | 1 | 0 | NULL |
(uid-用户ID, video_id-视频ID, start_time-开始观看时间, end_time-结束观看时间, if_follow-是否关注, if_like-是否点赞, if_retweet-是否转发, comment_id-评论ID)
短视频信息表tb_video_info
id | video_id | author | tag | duration | release_time |
1 | 2001 | 901 | 旅游 | 30 | 2021-09-05 07:00:00 |
2 | 2002 | 901 | 旅游 | 60 | 2021-09-05 07:00:00 |
3 | 2003 | 902 | 影视 | 90 | 2021-09-05 07:00:00 |
4 | 2004 | 902 | 影视 | 90 | 2021-09-05 08:00:00 |
(video_id-视频ID, author-创作者ID, tag-类别标签, duration-视频时长, release_time-发布时间)
问题:
找出近一个月发布的视频中热度最高的top3视频。
注:
- 热度=(a*视频完播率+b*点赞数+c*评论数+d*转发数)*新鲜度;
- 新鲜度=1/(最近无播放天数+1);
- 当前配置的参数a,b,c,d分别为100、5、3、2。
- 最近播放日期以end_time-结束观看时间为准,假设为T,则最近一个月按[T-29, T]闭区间统计。
- 结果中热度保留为整数,并按热度降序排序。
输出示例:
示例数据的输出结果如下
video_id | hot_index |
2001 | 122 |
2002 | 56 |
2003 | 1 |
解释:
最近播放日期为2021-10-03,记作当天日期;近一个月(2021-09-04及之后)发布的视频有2001、2002、2003、2004,不过2004暂时还没有播放记录;
视频2001完播率1.0(被播放次数4次,完成播放4次),被点赞3次,评论1次,转发2次,最近无播放天数为0,因此热度为:(100*1.0+5*3+3*1+2*2)/(0+1)=122
同理,视频2003完播率0,被点赞数1,评论和转发均为0,最近无播放天数为3,因此热度为:(100*0+5*1+3*0+2*0)/(3+1)=1(1.2保留为整数)。
数据准备:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
uid INT NOT NULL COMMENT '用户ID',
video_id INT NOT NULL COMMENT '视频ID',
start_time datetime COMMENT '开始观看时间',
end_time datetime COMMENT '结束观看时间',
if_follow TINYINT COMMENT '是否关注',
if_like TINYINT COMMENT '是否点赞',
if_retweet TINYINT COMMENT '是否转发',
comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
video_id INT UNIQUE NOT NULL COMMENT '视频ID',
author INT NOT NULL COMMENT '创作者ID',
tag VARCHAR(16) NOT NULL COMMENT '类别标签',
duration INT NOT NULL COMMENT '视频时长(秒数)',
release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:30', 1, 1, 1, null)
,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:31', 1, 1, 0, null)
,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:35', 0, 0, 1, null)
,(103, 2001, '2021-10-03 11:00:50', '2021-10-03 11:01:35', 1, 1, 0, 1732526)
,(106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:04', 2, 0, 1, null)
,(107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:06', 1, 0, 0, null)
,(108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null)
,(109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:01', 0, 1, 0, null)
,(105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 0, 1, null)
,(101, 2003, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 0, null)
,(101, 2003, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 0, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, '旅游', 30, '2021-09-05 7:00:00')
,(2002, 901, '旅游', 60, '2021-09-05 7:00:00')
,(2003, 902, '影视', 90, '2021-09-05 7:00:00')
,(2004, 902, '影视', 90, '2021-09-05 8:00:00');
解决:
SELECT *
FROM
(
SELECT
tag,
DATE_FORMAT( uv.end_time, '%Y-%m-%d' ) dt,
SUM(SUM( uv.if_like )) OVER ( PARTITION BY v.tag ORDER BY DATE_FORMAT( uv.end_time, '%Y-%m-%d' ) rows 6 PRECEDING ) like_cnt,
MAX(SUM( uv.if_retweet )) over ( PARTITION BY v.tag ORDER BY DATE_FORMAT( uv.end_time, '%Y-%m-%d' ) rows 6 PRECEDING ) retweet_cnt
FROM
tb_video_info v
LEFT JOIN
tb_user_video_log uv ON v.video_id = uv.video_id
GROUP BY
tag,
dt
) t1
WHERE DATEDIFF('2021-10-03',dt) BETWEEN 0 AND 2
ORDER BY tag DESC,dt
总结:
1.开窗函数https://blog.youkuaiyun.com/kejiayuan0806/article/details/103297893
2.求前一星期,前半年,应遵从粗粒度到细粒度,先求每天,每月的情况