题目传送门 : http://codeforces.com/contest/711/problem/C
题意:有n颗树,m中颜料,对树进行涂色,涂成k组(如1,2,1为三组;1,2,2为两组;1,1,1为一组)。接下里一行n个数,0代表未涂色,正数代表已涂色。接下来n行表示 第i棵树染成j色需要Pi,j吨颜料。问想要符合条件,最少需要耗费多少吨颜料
思路:三维dp,空间三维,时间n^4(CF机器果然快,1s差不多常熟倍的10^8),第一维i是树的个数,二维j是颜色的组数,三维l是i-1涂的颜色,状态转移方程,分为四个,天生带颜色的和不带颜色的各两个
if(c[i] > 0){ //天生带颜色的
if(c[i] == l) dp[i][j][c[i]] = min(dp[i][j][c[i]],dp[i-1][j][l]);
else dp[i][j][c[i]] = min(dp[i][j][c[i]],dp[i-1][j-1][l]);
}
else{ //需要进行涂色的
for(int q=1;q<=m;q++){
if(q == l) dp[i][j][q] = min(dp[i][j][q],dp[i-1][j][l] + p[i][q]);
else dp[i][j][q] = min(dp[i][j][q],dp[i-1][j-1][l] + p[i][q]);
}
}
代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <stdio.h>
#include <string>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ll long long
#define ull unsigned long long
#define mem(n,v) memset(n,v,sizeof(n))
#define MAX 105
#define MAXN 3000
#define PI 3.1415926
#define E 2.718281828459
#define opnin freopen("text.in.txt","r",stdin)
#define opnout freopen("text.out.txt","w",stdout)
#define clsin fclose(stdin)
#define clsout fclose(stdout)
#define haha1 cout << "haha1"<< endl
#define haha2 cout << "haha2"<< endl
#define haha3 cout << "haha3"<< endl
const int INF = 0x3f3f3f3f;
const ll INFF = 0x3f3f3f3f3f3f3f3f;
const double pi = 3.141592653589793;
const double inf = 1e18;
const double eps = 1e-8;
const ll mod = 1e9+7;
const ull mx = 133333331;
ll c[MAX];
ll p[MAX][MAX];
ll dp[MAX][MAX][MAX];
int main()
{
mem(c,0);
mem(p,0);
mem(dp,INFF);
ll n,m,k;
cin >> n >> m >> k;
for(int i=1;i<=n;i++)
scanf("%I64d",&c[i]);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%I64d",&p[i][j]);
}
}
if(c[1] > 0)
dp[1][1][c[1]] = 0;
else{
for(int j=1;j<=m;j++){
dp[1][1][j] = p[1][j];
}
}
for(int i=2;i<=n;i++){
for(int j=1;j<=n && j<=k;j++){
for(int l=1;l<=m;l++){
if(c[i] > 0){
if(c[i] == l) dp[i][j][c[i]] = min(dp[i][j][c[i]],dp[i-1][j][l]);
else dp[i][j][c[i]] = min(dp[i][j][c[i]],dp[i-1][j-1][l]);
}
else{
for(int q=1;q<=m;q++){
if(q == l) dp[i][j][q] = min(dp[i][j][q],dp[i-1][j][l] + p[i][q]);
else dp[i][j][q] = min(dp[i][j][q],dp[i-1][j-1][l] + p[i][q]);
}
}
}
}
}
ll Min = INFF;
for(int i=1;i<=m;i++)
Min = min(dp[n][k][i],Min);
if(Min != INFF) cout << Min <<endl;
else cout << "-1" << endl;
return 0;
}