划分COCO格式的数据集为train,val,test

1. MSCOCO数据集格式:

coco.json:

{
  "info": {...},
  "licenses": [...],
  "images": [...],
  "annotations": [...],
  "categories": [...]
}

2. 转换代码:

import json
import numpy as np

def split_dataset(json_file, ratios, names):
    assert sum(ratios) == 1.0, "Ratios must sum to 1.0"
    assert len(ratios) == len(names), "Must provide name for each split"

    # 载入整个json数据集
    with open(json_file, "r") as read_file:
        data = json.load(read_file)

    # 对图片和注解的id进行分割
    image_ids = [image["id"] for image in data["images"]]
    np.random.shuffle(image_ids)
    num_images = len(image_ids)
    
    splits = [int(ratio * num_images) for ratio in ratios]
    splits[-1] = num_images - sum(splits[:-1])  # Ensure the splits sum to num_images
    split_ids = np.split(image_ids, np.cumsum(splits[:-1]))

    # 创建一个函数来生成新的json数据集
    def create_subset(ids, name):
        subset = {}
        subset["info"] = data["info"]
        subset["licenses"] = data["licenses"]
        subset["categories"] = data["categories"]
        subset["images"] = [image for image in data["images"] if image["id"] in ids]
        subset["annotations"] = [annotation for annotation in data["annotations"] if annotation["image_id"] in ids]
        
        # 保存为新的json文件
        with open(f"{name}.json", "w") as write_file:
            json.dump(subset, write_file)

    # 创建数据集
    for ids, name in zip(split_ids, names):
        create_subset(ids, name)


# Example usage:
split_dataset("dataset.json", [0.8, 0.2, 0.0], ["train", "val", "test"])

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值