题目描述:
Equations are given in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0.
Example:
Given a / b = 2.0, b / c = 3.0.
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? .
return [6.0, 0.5, -1.0, 1.0, -1.0 ].
The input is: vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries, where equations.size() == values.size(), and the values are positive. This represents the equations. Return vector<double>.
According to the example above:
equations = [ ["a", "b"], ["b", "c"] ],
values = [2.0, 3.0],
queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].
The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.
构造有向图,记录边和权值,利用BFS遍历寻找终点。
class Solution {
public:
vector<double> calcEquation(vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries) {
unordered_map<string,vector<string>> graph; // 领接表
unordered_map<string,double> edge; // 边的权值
for(int i=0;i<equations.size();i++)
{
string a=equations[i].first;
string b=equations[i].second;
if(graph.count(a)==0) graph[a]=vector<string>(1,b);
else graph[a].push_back(b);
if(graph.count(b)==0) graph[b]=vector<string>(1,a);
else graph[b].push_back(a);
edge[a+"_"+b]=values[i];
edge[b+"_"+a]=1.0/values[i];
}
vector<double> result;
for(int i=0;i<queries.size();i++)
{
string a=queries[i].first;
string b=queries[i].second;
if(graph.count(a)==0||graph.count(b)==0) result.push_back(-1.0);
else if(a==b) result.push_back(1.0);
else
{
queue<pair<string,double>> q;
set<string> visited;
bool find=false;
q.push({a,1.0});
visited.insert(a);
while(!q.empty()) //使用队列实现BFS
{
pair<string,double> p=q.front();
q.pop();
for(auto neigh:graph[p.first])
{
if(neigh==b)
{
find=true;
result.push_back(p.second*edge[p.first+"_"+neigh]);
break;
}
else
{
if(visited.count(neigh)==0)
{
q.push({neigh,p.second*edge[p.first+"_"+neigh]});
visited.insert(p.first);
}
}
}
}
if(!find) result.push_back(-1.0);
}
}
return result;
}
};