今年公司年会的奖品特别给力,但获奖的规矩却很奇葩:
- 首先,所有人员都将一张写有自己名字的字条放入抽奖箱中;
- 待所有字条加入完毕,每人从箱中取一个字条;
- 如果抽到的字条上写的就是自己的名字,那么“恭喜你,中奖了!”
现在告诉你参加晚会的人数,请你计算有多少概率会出现无人获奖?
输入描述:
输入包含多组数据,每组数据包含一个正整数n(2≤n≤20)。
输出描述:
对应每一组数据,以“xx.xx%”的格式输出发生无人获奖的概率。
示例1
输入
2
输出
50.00%
这里要应用错排算法。
//简单的做个介绍
//当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用D(n)表示,
//那么D(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.
//第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
//第二步,放编号为k的元素,这时有两种情况:把它放到位置n,那么,对于剩下的n-1个元素,
//由于第k个元素放到了位置n,剩下n-2个元素就有D(n-2)种方法;
//第k个元素不把它放到位置n,这时,对于这n-1个元素,有D(n-1)种方法;
//综上得到递推公式,可以发现可以用递归来做;
//D(n) = (n-1) [D(n-2) + D(n-1)]
//特殊地,D(1) = 0, D(2) = 1.
//那么D(5)=4*[D(3)+D(4)];依次求得D(3)、D(4),最后D(5)=44
//所以5个人拿不到奖的概率就是44/120=36.67%
//这里只是简单介绍
具体想弄明白还是去百度错排算法
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
long long vec[21][2] = { {1,0}, {1,0}, {2,1}, {6,2} };
for (int i = 4; i < 21; ++i)
{
vec[i][0] = i * (vec[i - 1][0]);
vec[i][1] = (i - 1)*(vec[i - 2][1] + vec[i - 1][1]); //错排公式
}
int n;
while (cin >> n)
{
double res = (double)vec[n][1] / vec[n][0] * 100.00;
//printf("%02.2lf%\n", res);
printf("%.2lf%%\n", res);
}
return 0;
}
NowCoder每天要处理许多邮件,但他并不是在收件人列表中,有时候只是被抄送。他认为这些抄送的邮件重要性比自己在收件人列表里的邮件低,因此他要过滤掉这些次要的邮件,优先处理重要的邮件。
现在给你一串抄送列表,请你判断目标用户是否在抄送列表中。
输入描述:
输入有多组数据,每组数据有两行。
第一行抄送列表,姓名之间用一个逗号隔开。如果姓名中包含空格或逗号,则姓名包含在双引号里。总长度不超过512个字符。
第二行只包含一个姓名,是待查找的用户的名字(姓名要完全匹配)。长度不超过16个字符。
输出描述:
如果第二行的名字出现在收件人列表中,则输出“Ignore”,表示这封邮件不重要;否则,输出“Important!”,表示这封邮件需要被优先处理。
示例1
输入
Joe,Kewell,Leon
Joe
“Letendre, Bruce”,Joe,“Quan, William”
William
输出
Ignore
Important!
#include <iostream>
#include <string>
using namespace std;
int main()
{
string s1;
while(getline(cin,s1))
{
string s2;
getline(cin,s2);
bool flag = false;
for(int i = 0; i < s1.size(); ++i)
{
string temp;
if(s1[i] == '"')
{
i++;
while(i < s1.size() && s1[i] != '"')
{
temp += s1[i];//获取收件人姓名
i++;
}
if(temp == s2)
{
flag = true;标记
break;
}
}
else if(s1[i] != ',') //跳过逗号
{
while(i < s1.size() && s1[i] != ',')
{
temp += s1[i];
i++;
}
if(temp == s2)
{
flag = true;
break;
}
}
}
if(flag == true)
cout << "Ignore" << endl;
else
cout << "Important!" << endl;
}
return 0;
}