linux之读写锁技术

    在编写多线程的时候,有一种情况是十分常见的。那就是,有些公共数据修改的机会比较少。相比较改写,它们读的机会反而高的多。通常而言,在读的过程中,往往伴随着查找的操作,中间耗时很长。给这种代码段加锁,会极大地降低我们程序的效率。那么有没有一种方法,可以专门处理这种多读少写的情况呢?
    有,那就是读写锁。

    (1)首先,我们定义一下基本的数据结构。

  1. typedef struct _RWLock  
  2. {  
  3.     int count;  
  4.     int state;  
  5.     HANDLE hRead;  
  6.     HANDLE hWrite;  
  7. }RWLock;     
typedef struct _RWLock
{
    int count;
    int state;
    HANDLE hRead;
    HANDLE hWrite;
}RWLock;   
    同时,为了判断当前的锁是处于读状态,还是写状态,我们要定义一个枚举量,
  1. typedef enum  
  2. {  
  3.     STATE_EMPTY = 0,  
  4.     STATE_READ,  
  5.     STATE_WRITE  
  6. };  
typedef enum
{
    STATE_EMPTY = 0,
    STATE_READ,
    STATE_WRITE
};
     (2)初始化数据结构

  1. RWLock* create_read_write_lock(HANDLE hRead, HANDLE hWrite)  
  2. {  
  3.     RWLock* pRwLock = NULL;  
  4.   
  5.     assert(NULL != hRead && NULL != hWrite);  
  6.     pRwLock = (RWLock*)malloc(sizeof(RWLock));  
  7.     
  8.     pRwLock->hRead = hRead;  
  9.     pRwLock->hWrite = hWrite;  
  10.     pRwLock->count = 0;  
  11.     pRwLock->state = STATE_EMPTY;  
  12.     return pRwLock;  
  13. }  
RWLock* create_read_write_lock(HANDLE hRead, HANDLE hWrite)
{
    RWLock* pRwLock = NULL;

    assert(NULL != hRead && NULL != hWrite);
    pRwLock = (RWLock*)malloc(sizeof(RWLock));
  
    pRwLock->hRead = hRead;
    pRwLock->hWrite = hWrite;
    pRwLock->count = 0;
    pRwLock->state = STATE_EMPTY;
    return pRwLock;
}
     (3)获取读锁

  1. void read_lock(RWLock* pRwLock)  
  2. {  
  3.     assert(NULL != pRwLock);  
  4.       
  5.     WaitForSingleObject(pRwLock->hRead, INFINITE);  
  6.     pRwLock->counnt ++;  
  7.     if(1 == pRwLock->count){  
  8.         WaitForSingleObject(pRwLock->hWrite, INFINITE);  
  9.         pRwLock->state = STATE_READ;  
  10.     }  
  11.     ReleaseMutex(pRwLock->hRead);  
  12. }  
void read_lock(RWLock* pRwLock)
{
    assert(NULL != pRwLock);
    
    WaitForSingleObject(pRwLock->hRead, INFINITE);
    pRwLock->counnt ++;
    if(1 == pRwLock->count){
        WaitForSingleObject(pRwLock->hWrite, INFINITE);
        pRwLock->state = STATE_READ;
    }
    ReleaseMutex(pRwLock->hRead);
}
     (4)获取写锁
  1. void write_lock(RWLock* pRwLock)  
  2. {  
  3.     assert(NULL != pRwLock);  
  4.   
  5.     WaitForSingleObject(pRwLock->hWrite, INFINITE);  
  6.     pRwLock->state = STATE_WRITE;  
  7. }  
void write_lock(RWLock* pRwLock)
{
    assert(NULL != pRwLock);

    WaitForSingleObject(pRwLock->hWrite, INFINITE);
    pRwLock->state = STATE_WRITE;
}
     (5)释放读写锁
  1. void read_write_unlock(RWLock* pRwLock)  
  2. {  
  3.     assert(NULL != pRwLock);  
  4.   
  5.     if(STATE_READ == pRwLock->state){  
  6.         WaitForSingleObject(pRwLock->hRead, INFINITE);  
  7.         pRwLock->count --;  
  8.         if(0 == pRwLock->count){  
  9.             pRwLock->state = STATE_EMPTY;  
  10.             ReleaseMutex(pRwLock->hWrite);  
  11.         }  
  12.         ReleaseMutex(pRwLock->hRead);  
  13.     }else{  
  14.         pRwLock->state = STATE_EMPTY;  
  15.         ReleaseMutex(pRwLock->hWrite);  
  16.     }  
  17.       
  18.     return;  
  19. }  
void read_write_unlock(RWLock* pRwLock)
{
    assert(NULL != pRwLock);

    if(STATE_READ == pRwLock->state){
        WaitForSingleObject(pRwLock->hRead, INFINITE);
        pRwLock->count --;
        if(0 == pRwLock->count){
            pRwLock->state = STATE_EMPTY;
            ReleaseMutex(pRwLock->hWrite);
        }
        ReleaseMutex(pRwLock->hRead);
    }else{
        pRwLock->state = STATE_EMPTY;
        ReleaseMutex(pRwLock->hWrite);
    }
    
    return;
}

文章总结:
    (1)读写锁的优势只有在多读少写、代码段运行时间长这两个条件下才会效率达到最大化;
    (2)任何公共数据的修改都必须在锁里面完成;
    (3)读写锁有自己的应用场所,选择合适的应用环境十分重要;
    (4)编写读写锁很容易出错,朋友们应该多加练习;
    (5)读锁和写锁一定要分开使用,否则达不到效果。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值