Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 43332 Accepted Submission(s): 19229
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.

Note: the number of first circle should always be 1.

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2标准的DFS,深度搜索一下就好,我试了,要是输入个18,得跑好久,估计,是跑不出了,下面的代码可以ac#include <stdio.h> #include <string.h> int pri[55],cnt=1; int a[25],jdg[25],n; void dfs(int tmp) { int i; if(tmp>n) { if(pri[a[n]+a[1]]&&pri[a[n]+a[n-1]]) { for(i=1;i<=n;i++) { if(i==n) printf("%d\n",a[i]); else printf("%d ",a[i]); } } return ; } if(tmp>=3&&(!pri[a[tmp-1]+a[tmp-2]])) { return ; } for(i=2;i<=n;i++) { if(!jdg[i]) { a[tmp]=i; jdg[i]=1; dfs(tmp+1); jdg[i]=0; } } } int main() { int i,j; for(i=0;i<55;i++) pri[i]=1; for(i=2;i<=30;i++) { if(pri[i])//pri[i]=0 { for(j=i+i;j<55;j=j+i) pri[j]=0; } } pri[0]=pri[1]=0; while(~scanf("%d",&n)) { memset(jdg,0,sizeof(jdg)); a[1]=1; jdg[1]=1; printf("Case %d:\n",cnt++); dfs(2); printf("\n"); } return 0; }