import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
def forward(x):
return x * w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) * (y_pred - y)
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
print('w=',w)
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
l_sum += loss_val
print('\t', x_val, y_val, y_pred_val, loss_val)
print('MSE=', l_sum/3)
w_list.append(w)
mse_list.append(l_sum/3)
plt.plot(w_list, mse_list)
plt.ylabel('MSE')
plt.xlabel('w')
plt.show()
结果如下:


课后作业:
将线性模型由 y(hat) = x * w 改为 y(hat) = x * w - b
损失函数发生改变,结果图由二维变为三维
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
def forward(x):
return x * w - b
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) * (y_pred - y)
mse_list = []
W = np.arange(0.0,4.1,0.1)
B = np.arange(0.0,4.1,0.1)
[w,b]=np.meshgrid(W,B) #生成坐标点的网格矩阵,自动进行二次循环
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
print(y_pred_val)
loss_val = loss(x_val, y_val)
l_sum += loss_val
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(w, b, l_sum/3)
plt.show()
结果展示:

该博客探讨了线性模型在预测中的应用,从简单的y=wx模型开始,通过计算均方误差(MSE)作为损失函数。随着模型扩展为y=wx-b,损失函数随之改变,导致结果展示从二维平面上升到三维空间。博主通过代码展示了如何绘制三维损失曲面,并解释了参数w和b如何影响模型的性能。

被折叠的 条评论
为什么被折叠?



