Count the string
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 15427 Accepted Submission(s): 7040
Problem Description
It is well known that AekdyCoin is good at string problems as well as number theory problems. When given a string s, we can write down all the non-empty prefixes of this string. For example:
s: "abab"
The prefixes are: "a", "ab", "aba", "abab"
For each prefix, we can count the times it matches in s. So we can see that prefix "a" matches twice, "ab" matches twice too, "aba" matches once, and "abab" matches once. Now you are asked to calculate the sum of the match times for all the prefixes. For "abab", it is 2 + 2 + 1 + 1 = 6.
The answer may be very large, so output the answer mod 10007.
Input
The first line is a single integer T, indicating the number of test cases.
For each case, the first line is an integer n (1 <= n <= 200000), which is the length of string s. A line follows giving the string s. The characters in the strings are all lower-case letters.
Output
For each case, output only one number: the sum of the match times for all the prefixes of s mod 10007.
Sample Input
1 4 abab
Sample Output
6
题意:
给你一个长度为n(n<=2e5)的串,求其每个前缀在字符串中的数量之和%10007。
思路:
标准的扩展KMP。答案就是每个next数组的和。(扩展KMP不懂的小伙伴可以去百度~)
代码:
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<string>
#include<queue>
#include<vector>
#include<map>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=1000010;
const int K=1000005;
int nt[K],extand[K],n;
char S[K],T[K];
void Getnext(char *T,int *next)
{
int len=strlen(T),a=0;
next[0]=len;
while(a<len-1 && T[a]==T[a+1]) a++;
next[1]=a;
a=1;
for(int k=2; k<len; k++)
{
int p=a+next[a]-1,L=next[k-a];
if( (k-1)+L >= p)
{
int j = (p-k+1)>0 ? (p-k+1) : 0;
while(k+j<len && T[k+j]==T[j]) j++;
next[k]=j;
a=k;
}
else
next[k]=L;
}
}
void GetExtand(char *S,char *T,int *next)
{
Getnext(T,next);
int slen=strlen(S),tlen=strlen(T),a=0;
int MinLen = slen < tlen ? slen : tlen;
while(a<MinLen && S[a]==T[a]) a++;
extand[0]=a;
a=0;
for(int k=1; k<slen; k++)
{
int p=a+extand[a]-1, L=next[k-a];
if( (k-1)+L >= p)
{
int j= (p-k+1) > 0 ? (p-k+1) : 0;
while(k+j<slen && j<tlen && S[k+j]==T[j]) j++;
extand[k]=j;
a=k;
}
else
extand[k]=L;
}
}
int main()
{
int TT,cas=1;
scanf("%d",&TT);
while(TT--)
{
scanf("%d",&n);
scanf("%s",T);
Getnext(T,nt);
int ans=0;
for(int i=0; i<n; i++)
ans=(ans+nt[i])%10007;
printf("%d\n",ans);
}
return 0;
}