UVA - 10635 Prince and Princess(最长公共子序列O(nlogn))

本文介绍了一种求解最长公共子序列问题的有效算法,通过将复杂度从O(n^2)降低到O(nlogn),利用最长上升子序列的思想进行优化。文中提供了一个具体的实现案例,展示了如何通过搜索技巧来提升效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给你k,n,m三个数。再给你两个序列,长度分别为n+1和m+1,k没啥用,求两个序列的最长公共子序列。

思路:O(n^2)会超时,于是转化为O(nlogn)的最长上升子序列。

代码:

#include <bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=200010;
const int mo=1e9+7;
int f[maxn];
map<int,int>mp;
int search(int l,int r,int x)
{
    while(l<r)
    {
        int mid=(l+r)>>1;
        if(x<=f[mid]) r=mid;
        else l=mid+1;
    }
    return l;
}
int main()
{
    int T,cas;
    scanf("%d",&T);
    for(int cas=1;cas<=T;cas++)
    {
        int nn;
        scanf("%d",&nn);
        int n,m;
        scanf("%d %d",&n,&m);
        n++;m++;
        for(int x,i=1;i<=n;i++)
        {
            scanf("%d",&x);
            mp[x]=i;
        }
        int len=0;
        for(int a,x,i=1;i<=m;i++)
        {
            scanf("%d",&a);
            x=mp[a];
            if(!x) continue;
            if(x>f[len]) f[++len]=x;
            else
            {
                int p=search(1,len,x);
                f[p]=x;
            }
        }
        printf("Case %d: %d\n",cas,len);
    }
    return 0;
}

### 关于最长公共子序列问题的时间复杂度为O(nlogn)的算法模板 对于给定两个长度分别为m和n的字符串X和Y,计算其最长公共子序列(LCS),通常的方法是采用时间复杂度为\(O(m \times n)\)的动态规划方法。然而,在特定情况下可以实现更高效的解决方案。 当处理的是排列而非一般字符串时,即输入数据由不重复整数构成并代表某种顺序,则存在一种基于二分查找技术来达到\(O((m+n)\log m)\)[^1]效率级别的改进型解法。此方法首先映射其中一个序列为连续区间内的数值以便后续操作;接着利用另一个序列中的元素在此已调整过的序列上执行类似于最长增加子序列(Longest Increasing Subsequence, LIS)的操作流程完成匹配过程[^2]。 具体来说: - 将第一个排列 \(P_1\) 映射到位置索引; - 对第二个排列 \(P_2\) 中每一个值查询它在 \(P_1\) 中的位置,并记录这些位置形成的新列表; - 使用上述新列表作为基础去解决一个等价版本的最大增长子串问题——这一步骤能够通过树状数组或线段树等方式加速至 \(O(N\log N)\) 时间内完成[^3]。 以下是Python代码示例展示如何应用这一思路解决问题: ```python from bisect import bisect_left def map_positions(p): pos = {value: index for index, value in enumerate(p)} return [pos[value]+1 for value in p] def lis(nums): dp = [] for num in nums: i = bisect_left(dp, num) if i == len(dp): dp.append(num) else: dp[i] = num return len(dp) def lcs_via_lis(p1, p2): mapped_p2 = map_positions(dict(enumerate(p1))) positions_in_p1 = [mapped_p2[p] for p in p2 if p in mapped_p2] return lis(positions_in_p1) p1 = [3, 2, 1, 4, 5] p2 = [1, 2, 3, 4, 5] print(lcs_via_lis(p1, p2)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值