AVL树

AVL树

AVL树是最早被发明的自平衡二叉查找树

  • 在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树
  • 查找、插入和删除在平均和最坏情况下的时间复杂度都是 O ( l o g n ) O(logn) O(logn)
  • 节点的平衡因子是它左、右子树的高度之差,如果这个差大于等于2就是不平衡的,即在AVL树中任意节点的左右子树的高度之差不大于1
  • 对于不平衡的树,需要对其做旋转操作使其平衡

AVL树算法

AVL树的基本操作一般涉及运作同在不平衡的二叉查找树所运作的同样的算法。但是要进行预先或随后做一次或多次所谓的"AVL旋转"。

以下图表以四列表示四种情况,每行表示在该种情况下要进行的操作。在左左和右右的情况下,只需要进行一次旋转操作;在左右和右左的情况下,需要进行两次旋转操作

在这里插入图片描述

求平衡因子

递归地去搜索左右子树的平衡因子并加1,如果当前节点是空节点,就返回0

搜索

可以像普通二叉查找树一样的进行,所以耗费O(log n)时间,因为AVL树总是保持平衡的。不需要特殊的准备,树的结构不会由于查找而改变。(这是与伸展树搜索相对立的,它会因为搜索而变更树结构

插入

在将值val插入树根节点root时需要先进行判断

  • root为空,直接将root的val等于val
  • val &lt; \lt <root.val,将val插入root的左子树,同时判断插入后root的左右子树的平衡因子,如果不平衡
    • 如果val &lt; \lt <root.left.val,就需要将root右旋
    • 如果val &gt; \gt >root.left.val,就需要先将root.left左旋然后将root右旋
  • val &gt; \gt >root.val,将val插入root的右子树,同时判断插入后root的左右子树的平衡因子,如果不平衡
    • 如果val &lt; \lt <root.right.val,就需要先将root.right右旋然后将root左旋
    • 如果val &gt; \gt >root.right.val,就需要将root左旋
删除

从AVL树中删除,可以通过把要删除的节点向下旋转成一个叶子节点,接着直接移除这个叶子节点来完成。因为在旋转成叶子节点期间最多有log n个节点被旋转,而每次AVL旋转耗费固定的时间,所以删除处理在整体上耗费O(log n) 时间

参考自:wiki

07-07
AVL是一种自平衡的二叉查找,它确保了的高度始终保持在对数级别,从而保证了查找、插入和删除操作的时间复杂度为O(log n)。这种数据结构以它的发明者G.M. Adelson-Velsky和E.M. Landis的名字命名[^1]。 ### AVL的定义 - **平衡因子**:每个节点都有一个平衡因子,它是该节点左子的高度减去右子的高度。对于AVL来说,所有节点的平衡因子只能是-1, 0或1。 - **空**:如果T是空,则它自然是一个AVL。 - **非空**:若T不是空,则其左右子TL和TR都必须是AVL,并且对于任意节点,|HL - HR| ≤ 1(其中HL和HR分别表示左子和右子的高度)。 ### AVL的操作 当进行插入或删除操作时,可能会破坏AVL的平衡性,这时需要通过旋转来重新恢复平衡: - **单旋转**: - 左单旋(Single Rotate with Left)用于处理左孩子的左子过高。 - 右单旋(Single Rotate with Right)用于处理右孩子的右子过高。 - **双旋转**: - 左右双旋(Double Rotate with Left)用于处理左孩子的右子过高的情况。 - 右左双旋(Double Rotate with Right)用于处理右孩子的左子过高的情况。 这些旋转操作可以保持AVL的性质不变,并且能够快速地调整的结构以维持平衡。 ### AVL的实现 下面是一个简单的C语言代码示例,展示了如何定义AVL的节点以及实现基本的插入操作。这个例子中包含了必要的函数声明和一些核心逻辑。 ```c #include <stdio.h> #include <stdlib.h> // 定义AVL节点结构体 typedef struct AvlNode { int element; struct AvlNode *left; struct AvlNode *right; int height; // 节点的高度 } *AvlTree, *Position; // 获取两个整数中的较大者 int max(int a, int b) { return (a > b) ? a : b; } // 计算给定节点的高度 static int Height(AvlTree T) { if (T == NULL) return -1; // 空节点高度为-1 else return T->height; } // 单旋转 - 左左情况 AvlTree singlerotatewithLeft(AvlTree K2) { Position K1 = K2->left; K2->left = K1->right; K1->right = K2; // 更新节点高度 K2->height = max(Height(K2->left), Height(K2->right)) + 1; K1->height = max(Height(K1->left), K2->height) + 1; return K1; // 新根 } // 单旋转 - 右右情况 AvlTree singlerotatewithRight(AvlTree K2) { Position K1 = K2->right; K2->right = K1->left; K1->left = K2; // 更新节点高度 K2->height = max(Height(K2->left), Height(K2->right)) + 1; K1->height = max(Height(K1->right), K2->height) + 1; return K1; // 新根 } // 双旋转 - 左右情况 AvlTree doublerotatewithLeft(AvlTree K3) { K3->left = singlerotatewithRight(K3->left); return singlerotatewithLeft(K3); } // 双旋转 - 右左情况 AvlTree doublerotatewithRight(AvlTree K3) { K3->right = singlerotatewithLeft(K3->right); return singlerotatewithRight(K3); } // 插入新元素到AVLAvlTree Insert(int x, AvlTree T) { if (T == NULL) { // 如果为空,创建新节点 T = (AvlTree)malloc(sizeof(struct AvlNode)); if (T == NULL) printf("Out of space!!!"); else { T->element = x; T->left = T->right = NULL; T->height = 0; // 新叶节点高度为0 } } else if (x < T->element) { // 向左子插入 T->left = Insert(x, T->left); // 检查并修复平衡 if (Height(T->left) - Height(T->right) == 2) { if (x < T->left->element) T = singlerotatewithLeft(T); // 左左旋转 else T = doublerotatewithLeft(T); // 左右旋转 } } else if (x > T->element) { // 向右子插入 T->right = Insert(x, T->right); // 检查并修复平衡 if (Height(T->right) - Height(T->left) == 2) { if (x > T->right->element) T = singlerotatewithRight(T); // 右右旋转 else T = doublerotatewithRight(T); // 右左旋转 } } // 更新高度 T->height = max(Height(T->left), Height(T->right)) + 1; return T; } ``` 上述代码提供了AVL的基本框架,包括节点定义、插入操作及必要的旋转方法。实际应用中可能还需要添加更多的功能,如删除节点、查找特定值等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值