LOTO示波器功率分析功能

LOTO示波器软件在非标功能中增加了功率分析功能,对当前屏幕的电压波形和电流波形进行了瞬时功率,视在功率以及有功功率/平均功率的分析计算。
有功功率是指电器所消耗的电能,用于产生热能、机械能或光能等,是我们所需要的能量。而无功功率则是由于电流和电压之间的相位差而产生的,这种功率并没有直接作用于电器,而是在电路中往返传输,部分以热能的形式散失在电线中。在电网中,无功功率的存在会影响电压的稳定性和电能的损耗。当电网中存在大量的无功功率时,会使电压下降,影响电器的正常使用。
视在功率是指电路中电能的总流量,包括有功功率和无功功率。视在功率的单位是伏安(VA),它代表了电路中的总电流和电压之间的乘积。视在功率的意义在于它能够帮助我们更好地了解电路的总能量消耗,从而更好地进行电路设计和优化。在实际应用中,视在功率通常用于评估电路的容量和负载能力,以确保电路能够正常工作且不会过载。视在功率与有功功率和无功功率不同,它并不代表电路中实际的功率消耗,而是表示电路中电能的总流量。

在这里插入图片描述

位置如下所示:
在这里插入图片描述

我们需要确保示波器的通道A和通道B分别接入电压和电流波形,至于哪个通道对应电压哪个通道对应电流是不需要区分的,因为功率是两个通道的数值的乘法计算,不需要区分顺序。但是我们需要注意设置好每通道对应的物理量转换,因为功率单位是电压单位X电流单位,功率数值是电压数值X电流数值,所以通道的电压需要选择好探头设置,设置为标准的V或者毫伏或者千伏之类标准单位,电流也要设置为A或者毫安,千安之类的标准电流单位。
打开功率分析页面后,如下图所示:

在这里插入图片描述

针对实际的测量情况,电压通道和电流通道所使用的单位我们可以在面板中设定:

在这里插入图片描述

瞬时功率:瞬时功率是某一时刻的瞬时电压乘以这一时刻的瞬时电流所得到的功率数据。对于变化的电压或电流,这个瞬时功率是随时可能变化的,所以我们将这个瞬时功率数据显示在十字光标上。如下图所示,我们通过勾选打开瞬时功率功能后,

在这里插入图片描述

会自动将通道A和通道B的乘积波形显示在绘图区,并且,随着光标的移动,会在这条乘积曲线,也就是瞬时功率曲线上粘连显示当前光标位置的瞬时功率数值。

在这里插入图片描述

上图中1号光标显示的是电压的瞬时值,2号光标显示的是电流的瞬时值,3号显示的是功率曲线,4号光标显示的是当时的瞬时功率值。也就是1号乘以2号。
视在功率:视在功率是用当前屏幕显示的电压波形的真有效值,乘以当前屏幕内显示的电流波形的真有效值,得出来的功率值。如下图所示,通过勾选打开视在功率的显示:

在这里插入图片描述

有功功率/平均功率:有功功率通过下图所示的勾选使能,并且显示屏幕内波形的有功功率。有功功率是通过对屏幕内所有波形的瞬时功率进行积分得到屏幕内的总功,然后除以屏幕内的时间长度,得到的功率。这个屏幕内的总功,我们也会显示在面板中。

在这里插入图片描述

屏幕累计功耗:上面提到的当前屏幕我们通过对瞬时功率进行积分得到了整屏的总功耗,每采集一屏波形,我们会把这屏波形的总功耗做一次累计,显示为屏幕累计功耗。

在这里插入图片描述

当前屏幕功耗以及屏幕累计功耗通常由于波形的时长很短,所以数据很小,可以选择显示为瓦时(WH)或者毫瓦时(mWH),累计功耗可以通过旁边的按钮进行清零。

<think>嗯,用户想了解如何用示波器测试LIN通信。首先,我需要回忆一下LIN总线的基础知识。LIN是局域互联网络,常用于汽车中的低速通信,比如车门、座椅这些地方。它的物理层是单线传输,电压一般是12V,速率最高20kbps。对了,显性电平是接近地,而隐性电平接近电源电压,这点和CAN总线类似,但LIN速度更慢。 然后,用户提到了示波器的设置。示波器的通道设置应该用单通道,因为LIN是单线。电压量程可能需要根据车辆的实际电压来调,比如12V系统的话,设置成±15V比较合适。时间基准的话,因为LIN的波特率是20kbps,所以位时间大约是50微秒,一个完整的帧可能有几十位,所以时间窗口可能要设置到几十毫秒,这样能捕捉到完整的帧。触发设置方面,可能需要用边沿触发,在隐性到显性的下降沿触发,因为LIN的起始是显性电平,也就是0。 接下来是信号抓取。需要正确连接示波器的探头,地线夹接车身地,探头接LIN线。然后捕捉波形,确保同步域、标识符、数据域和校验和都显示出来。比如同步域是0x55,也就是二进制01010101,所以波形上会有交替的位变化。 然后是解码分析。现在的示波器大多有协议解码功能,选择LIN协议,设置正确的波特率和帧结构。解码后的数据应该能显示各个字段,比如标识符、数据字节和校验和。如果有问题,比如校验错误或者波形畸变,可能要考虑线路故障或者节点故障。 用户提供的引用里提到了一些具体案例,比如引用[2]中的波形分析,同步域是0x55,标识符0xD3,数据域0x1A 0x00,校验和0x12。这可能是一个实际案例,可以作为例子说明如何解析数据。另外引用[3]和[4]提到了故障诊断和解码操作,这部分需要强调如何利用示波器的解码功能来诊断问题,比如断开某个节点后波形是否恢复正常。 可能用户的实际需求是汽车维修或电子测试,需要具体的步骤和设置参数。需要确保步骤清晰,从硬件连接到软件设置,再到解码分析,每一步都要详细说明。另外,常见问题比如信号干扰、接线错误也要提到,帮助用户避免常见陷阱。 还要注意用户要求使用中文,回答结构要清晰,分步骤说明。引用部分要自然标注,比如在解释显性电平时引用[1],在同步域的例子引用[2]。最后生成相关问题,可能涉及LIN协议的其他方面或者更深入的故障诊断方法。</think>### 如何用示波器测试LIN总线通信信号? #### 一、硬件连接与设置 1. **物理层连接** - 将示波器探头地线夹连接车身搭铁(接地),探头正极接入LIN总线信号线(单线传输)[^1]。 - 推荐使用衰减比为1:10的探头,以适配汽车12V系统电压范围。 2. **示波器参数设置** - **电压量程**:设置为±15V(覆盖LIN总线隐性电平12V和显性电平接近0V的特性)[^1]。 - **时间基准**:根据LIN波特率(典型值9.6kbps或19.2kbps)调整。例如,20kbps对应位宽50μs,建议水平时基设为1ms/div。 - **触发模式**:选择下降沿触发(捕捉LIN帧起始的显性电平)[^3]。 --- #### 二、信号抓取与分析 1. **波形特征识别** - **显性电平**:接近0V(逻辑0),表现为总线被拉低,用于帧起始和间隔域。 - **隐性电平**:接近12V(逻辑1),总线未被主动驱动时状态。 - **同步域**:固定为`0x55`(二进制`01010101`),表现为交替的显性/隐性电平[^2]。 ```text 示例波形: |间隔域(13位0)|同步域0x55|标识符|数据域|校验和| ``` 2. **协议解码设置** - 在示波器中启用LIN协议解码功能(如LOTO示波器软件或虹科Pico的定制工具[^4])。 - 配置参数:波特率、帧格式(标准帧/扩展帧)、校验方式(经典校验/增强校验)。 --- #### 三、故障诊断案例 1. **波形畸变分析** - 若显性电平未达到0V:检查总线对地短路或节点驱动能力不足。 - 同步域异常:确认主节点时钟同步信号是否正常[^2]。 2. **数据解析验证** - 对比解码后的标识符(如`0xD3`)与数据域(如`0x1A 0x00`),校验和需匹配计算值(如`0x12`)。 --- #### 四、操作流程总结 1. 连接示波器并设置触发条件 2. 抓取完整LIN帧波形(包含间隔域+同步域+数据) 3. 启用协议解码并验证数据有效性 4. 结合波形特征诊断物理层或协议层故障[^3] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值