A - 棋盘问题

本文介绍了一种在特定形状的棋盘上放置棋子的问题,要求任意两棋子不在同一行或列。通过深度优先搜索算法(DFS)解决棋子放置方案的数量计算问题,并提供了三种不同的实现方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A - 棋盘问题

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1

搜索路径 ::

 

1.棋子第一行进行遍历,j=0

标记第一行,当前摆放棋子数目way==1,

1.2.棋子第二行进行遍历,j=1

标记第二行,当前摆放棋子数目way==2,

way==K,return

清除第二行标记,摆放棋子数目way--,way=1

1.3棋盘第三行开始遍历,j=2

标记第三行,当前摆放棋子数目way==2

way==K,return

清除第三行标记,摆放棋子数目way--,way=1

1.4 标记第四行,当前摆放棋子数目way==2

way==K,return

清除第四行标记,摆放棋子数目way--,way=1

1系列完全遍历,第一行进行清除标记,way--,way==0

---每次遍历完全后,最后一行的DFS来开启下一行的遍历

由最后一行DFS进入2.系列--类似以上过程

参考网址 ::

https://blog.youkuaiyun.com/pit3369/article/details/68926243

方法一::

这种方法是用二维数组存储,二位数组存的时候是按字符串存储的,所以,在第一行输入n和k的值后,后面的回车要读走,不然影响后面字符的读入,而且每读完一行字符后,行的结尾的回车要读走,不然影响下一行的读入,这是特别要注意的。

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
using namespace std;
char mp[10][10];
int vis[100];
int n,k;
int way;//表示走的步数
int cnt;//记录个数
void  dfs(int p){
  if(way==k){  //当走的步数,即棋子的个数达到题目让放的数目的时候,就是一种情况,个数加1,然后返回上一层
    cnt++;
    return ;
  }
  if(p>=n){  //当遍历的行数大于数组的行数的时候,就结束
    return ;
  }
  for(int j=0;j<n;j++){
    if(vis[j]==0 && mp[p][j]=='#'){
        way++;
        vis[j]=1;//标记 
        dfs(p+1);
     //遍历失败或者棋子数满足了
        way--;
        vis[j]=0;//清除标记
    }
  }
  dfs(p+1);//该行已经满足棋子总数,所以K行不放棋子
}
int main(){
  int i,j;
  while(scanf("%d%d",&n,&k)!=EOF){
        getchar();
        way=cnt=0;
    if(n==-1 || k==-1){
        break;
    }
    memset(vis,0,sizeof(vis));
    memset(mp,0,sizeof(mp));
    for(i=0;i<n;i++){
        for(j=0;j<n;j++){
            scanf("%c",&mp[i][j]);
        }
        getchar();
    }
        dfs(0);
        cout<<cnt<<endl;

  }
}

方案二:::

这个方法的读入是用字符串读入的,所以再付一行输入n和k的值后,不用getchar(),把后面的回车读走。

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
using namespace std;
char mp[10][10];
int vis[100];
int n,k;
int way;//表示走的步数
int cnt;//记录个数
void  dfs(int p){
  if(way==k){  //当走的步数,即棋子的个数达到题目让放的数目的时候,就是一种情况,个数加1,然后返回上一层
    cnt++;
    return ;
  }
  if(p>=n){//当遍历的行数大于数组的行数的时候,就结束
    return ;
  }
  for(int j=0;j<n;j++){
    if(vis[j]==0 && mp[p][j]=='#'){
        way++;
        vis[j]=1;
        dfs(p+1);
        way--;
        vis[j]=0;
    }
  }
  dfs(p+1);
}
int main(){
  int i,j;
  while(scanf("%d%d",&n,&k)!=EOF){
        way=cnt=0;
    if(n==-1 || k==-1){
        break;
    }
    memset(vis,0,sizeof(vis));
    memset(mp,0,sizeof(mp));
    for(i=0;i<n;i++){
        scanf("%s",mp[i]);
    }

        dfs(0);
        cout<<cnt<<endl;

  }
}

方法三:

 

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn=20;
char g[maxn][maxn];
int n,k,num,ans;
int vis[maxn];
void dfs(int step)
{
      if(num==k)
      {
      	ans++;
      	return ;
	  }
	  if(step>=n)
	  {
	  	return ;
	  }
      for(int i=0;i<n;i++)
      {
      	if(vis[i]==0 && g[step][i]=='#')
      	{
      	    vis[i]=1;
			num++;
			dfs(step+1);
			vis[i]=0;
			num--;
		}
	  }
	  dfs(step+1);
}
int main()
{
	while(scanf("%d%d",&n,&k)!=EOF)
	{
		ans=0;
		getchar();
		int sum=0;
		if(n==-1 && k==-1)
		{
			break;
		}
		for(int i=0;i<n;i++)
		{
			for(int j=0;j<n;j++)
			{
				scanf("%c",&g[i][j]);
				if(g[i][j]=='#')
				  sum++;
			}
			getchar();
		}
        if(k>sum)
        {
        	printf("0\n");
		}else
		{
			num=0;
			memset(vis,0,sizeof(vis));
			dfs(0);
			printf("%d\n",ans);
		}
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值