226.翻转二叉树
就是个深搜,先翻转左右子树,再递归调用,让自己的子树也翻转。最终所有的子树翻转一次,总体就翻转过来了。
递归写法:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
if not root:
return
root.left, root.right = root.right, root.left
self.invertTree(root.left)
self.invertTree(root.right)
return root
迭代写法:也就是个前序遍历。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
if not root:
return root
stack = [root]
while stack:
cur = stack.pop()
cur.left, cur.right = cur.right, cur.left
if cur.right:
stack.append(cur.right)
if cur.left:
stack.append(cur.left)
return root
101. 对称二叉树
递归很容易,因为根节点不用管,所以构造一个辅助函数即可。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
if not root:
return True
def isEqual(left, right):
if not left and not right:
return True
if not right or not left:
return False
return left.val == right.val and isEqual(left.left, right.right) and isEqual(left.right, right.left)
return isEqual(root.left, root.right)
迭代:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
if not root:
return True
stack = [root.left, root.right]
while stack:
right = stack.pop()
left = stack.pop()
if not right and not left:
continue
if not right or not left or right.val != left.val:
return False
stack.append(left.left)
stack.append(right.right)
stack.append(left.right)
stack.append(right.left)
return True
104.二叉树的最大深度
这题一下想到广搜..
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
depth = 0
if not root:
return 0
que = collections.deque([root])
while que:
depth += 1
for i in range(len(que)):
cur = que.popleft()
if cur.left:
que.append(cur.left)
if cur.right:
que.append(cur.right)
return depth
递归也不难~当前层的最大深度=左子树右子树的最大深度+1
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
return 1 + max(self.maxDepth(root.left), self.maxDepth(root.right))
111.二叉树的最小深度
这题因为只有到叶子节点才算一个路径,这里用闭包传递。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def minDepth(self, root: Optional[TreeNode]) -> int:
d = float('inf')
def dfs(root, h):
nonlocal d
if not root.left and not root.right:
return min(d, h + 1)
if root.left:
d = dfs(root.left, h + 1)
if root.right:
d = dfs(root.right, h + 1)
return d
return dfs(root, 0) if root else 0
理解一下题解方法,
class Solution:
def minDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
if not root.left and root.right:
return 1 + self.minDepth(root.right)
elif not root.right and root.left:
return 1 + self.minDepth(root.left)
else:
return 1 + min(self.minDepth(root.left), self.minDepth(root.right))
感觉上差不多,这里对非叶子节点做了判断,在不是叶子节点的地方不去做比较。
迭代:从上往下遇到第一个叶子节点就是最小深度。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def minDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
que = collections.deque([root])
level = 0
while que:
level += 1
for i in range(len(que)):
cur = que.popleft()
if cur.left:
que.append(cur.left)
if cur.right:
que.append(cur.right)
if not cur.left and not cur.right:
return level

被折叠的 条评论
为什么被折叠?



