the framework of dynamically reconmend the content of educational correction courses

该系统结合多个因素设计动态推荐教育矫正课程,包括数据收集预处理、权重确定、个性化推荐算法及系统实施与反馈回路。通过专家评分、机器学习确定因素权重,根据矫正对象信息构建用户画像,计算课程推荐得分,实现动态调整和效果优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Designing a system to dynamically develop the content of educational correction courses for community correction subjects requires a combination of factors to ensure personalization and targeting. The following is a conceptual scheme and algorithmic implementation framework.

1. Data collection and preprocessing

Data collection: First, the system needs to collect specific information about each correction object, including but not limited to criminal facts, community correction types, psychological evaluation results before and after correction, gender, age, employment and school records, family social relations, reward and punishment records, etc.

Data preprocessing: cleaning data, handling missing values, standardizing scores (e.g. psychological assessment results), and performing necessary coding (e.g. gender, age classification).

2. Factor weight determination

Expert scoring or

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值