GC - Category of Garbage Collector

本文深入探讨Java垃圾回收机制中的低暂停收集器和高吞吐量收集器,包括平行复制收集器、并发收集器、平行扫荡收集器与标记-压缩收集器的工作原理及应用。详细解析了如何通过调整参数来优化垃圾回收性能,以实现低暂停时间和高应用程序吞吐量。

2.1 Low Pause Collectors

2.1.1 Parallel Copying Collector

The Parallel Copying Collector is similar to the Copying Collector [1], but instead of using one thread to collect young generation garbage, the collector allocates as many threads as the number of CPUs to parallelize the collection. The parallel copying collector works with both the concurrent collector and the default mark-compact collector.

Single Threaded & Parallel Collection
Figure 1 - Single Threaded & Parallel Collection

The parallel copying collection is still stop-the-world, but the cost of the collection is now dependent on the live data in the young generation heap, divided by the number of CPUs available. So bigger younger generations can be used to eliminate temporary objects while still keeping the pause low. The degree of parallelism i.e., the number of threads collecting can be tuned. This parallel collector works very well from small to big young generations.

The figure (Fig. 1) illustrates the difference between the single threaded and parallel copy collection. The green arrows represent application threads, and the red arrow(s) represent GC threads. The application threads (green arrows) are stopped when a copy collection has to take place. In case of the parallel copy collector, the work is done by n number of threads compared to 1 thread in case of the single threaded copy collector.

2.1.2 Concurrent Collector

The concurrent collector uses a background thread that runs concurrently with the application threads to enable both garbage collection and object allocation/modification to happen at the same time. The collector collects the garbage in phases, two are stop-the-world phases, and four are concurrent and run along with the application threads. The phases in order are, initial-mark phase (stop-the-world), mark-phase (concurrent), pre-cleaning phase (concurrent), remark-phase (stop-the-world), sweep-phase (concurrent) and reset-phase (concurrent). The initial-mark phase takes a snapshot of the old generation heap objects followed by the marking and pre-cleaning of live objects. Once marking is complete, a remark-phase takes a second snapshot of the heap objects to capture changes in live objects. This is followed by a sweep phase to collect dead objects - coalescing of dead objects space may also happen here. The reset phase clears the collector data structures for the next collection cycle. The collector does most of its work concurrently, suspending application execution only briefly.

Concurrent Collection
Figure 2 - Concurrent Collection

The figure (Fig. 2) illustrates the main phases of the concurrent collection. The green arrows represent application threads, and the red, GC thread(s). The small red arrow represents, the brief stop-the-world marking phases, when a snapshot of the heap is made. The GC thread (big red arrow) runs concurrently with application threads (green arrows) to mark and sweep the heap.

Note: If "the rate of creation" of objects is too high, and the concurrent collector is not able to keep up with the concurrent collection, it falls back to the traditional mark-sweep collector.

2.2 Throughput Collectors

2.2.1 Parallel Scavenge Collector

Parallel Collection
Figure 3 - Parallel Collection

The parallel scavenge collector is similar to the parallel copying collector, and collects young generation garbage. The collector is targeted towards large young generation heaps and to scale with more CPUs. It works very well with large young generation heap sizes that are in gigabytes, like 12GB to 80GB or more, and scales very well with increase in CPUs, 8 CPUs or more. It is designed to maximize throughput in enterprise environments where plenty of memory and processing power is available.

The parallel scavenge collector is again stop-the-world, and is designed to keep the pause down. The degree of parallelism can again be controlled. In addition, the collector has an adaptive tuning policy that can be turned on to optimize the collection. It balances the heap layout by resizing, Eden, Survivor spaces and old generation sizes to minimize the time spent in the collection. Since the heap layout is different for this collector, with large young generations, and smaller older generations, a new feature called "promotion undo" prevents old generation out-of-memory exceptions by allowing the parallel collector to finish the young generation collection.

The figure (Fig. 3) illustrates the application threads (green arrows) which are stopped when a copy collection has to take place. The red arrow represents the n number of parallel threads employed in the collection.

2.2.2 Mark-Compact Collector

The parallel scavenge collector interacts with the mark-sweep-compact collector, the default old generation collector. The mark-compact collector is the traditional mark-compact collector, and is very efficient for enterprise environments where pause is not a big criterion. The throughput collectors are designed to maximize the younger generation heap while keeping the older generation heap to the needed minimum - old generation is intended to very long-term objects only.

Mark-Compact Collection
Figure 4 - Mark-Compact Collection

The figure (Fig. 4) illustrates a stop-the-world, old generation mark-sweep-compact collection. The application threads (green arrows) are stopped during the collection. The old generation collection single threaded.

先展示下效果 https://pan.quark.cn/s/e81b877737c1 Node.js 是一种基于 Chrome V8 引擎的 JavaScript 执行环境,它使开发者能够在服务器端执行 JavaScript 编程,显著促进了全栈开发的应用普及。 在 Node.js 的开发流程中,`node_modules` 文件夹用于存储所有依赖的模块,随着项目的进展,该文件夹可能会变得异常庞大,其中包含了众多可能已不再需要的文件和文件夹,这不仅会消耗大量的硬盘空间,还可能减慢项目的加载时间。 `ModClean 2.0` 正是为了应对这一挑战而设计的工具。 `ModClean` 是一款用于清理 `node_modules` 的软件,其核心功能是移除那些不再被使用的文件和文件夹,从而确保项目的整洁性和运行效率。 `ModClean 2.0` 是此工具的改进版本,在原有功能上增加了更多特性,从而提高了清理工作的效率和精确度。 在 `ModClean 2.0` 中,用户可以设置清理规则,例如排除特定的模块或文件类型,以防止误删重要文件。 该工具通常会保留项目所依赖的核心模块,但会移除测试、文档、示例代码等非运行时必需的部分。 通过这种方式,`ModClean` 能够协助开发者优化项目结构,减少不必要的依赖,加快项目的构建速度。 使用 `ModClean` 的步骤大致如下:1. 需要先安装 `ModClean`,在项目的根目录中执行以下命令: ``` npm install modclean -g ```2. 创建配置文件 `.modcleanrc.json` 或 `.modcleanrc.js`,设定希望清理的规则。 比如,可能需要忽略 `LICENSE` 文件或整个 `docs`...
2026最新微信在线AI客服系统源码 微信客服AI系统是一款基于PHP开发的智能客服解决方案,完美集成企业微信客服,为企业提供7×24小时智能客服服务。系统支持文本对话、图片分析、视频分析等多种交互方式,并具备完善的对话管理、人工转接、咨询提醒等高级功能。 核心功能 ### 1.  智能AI客服 #### 自动回复 - **上下文理解**:系统自动保存用户对话历史,AI能够理解上下文,提供连贯的对话体验 - **个性化配置**:可自定义系统提示词、最大输出长度等AI参数 #### 产品知识库集成 - **公司信息**:支持配置公司简介、官网、竞争对手等信息 - **产品列表**:可添加多个产品,包括产品名称、配置、价格、适用人群、特点等 - **常见问题FAQ**:预设常见问题及答案,AI优先使用知识库内容回答 - **促销活动**:支持配置当前优惠活动,AI会自动向用户推荐 ### 2. 多媒体支持 #### 图片分析 - 支持用户发送图片,AI自动分析图片内容 - 可结合文字描述,提供更精准的分析结果 - 支持常见图片格式:JPG、PNG、GIF、WebP等 #### 视频分析 - 支持用户发送视频,AI自动分析视频内容 - 视频文件自动保存到服务器,提供公网访问 - 支持常见视频格式:MP4、等 ### 3.  人工客服转接 #### 关键词触发 - **自定义关键词**:可配置多个转人工触发关键词(如:人工、客服、转人工等) - **自动转接**:用户消息包含关键词时,自动转接给指定人工客服 - **友好提示**:转接前向用户发送提示消息,提升用户体验 #### 一键介入功能 - **后台管理**:管理员可在对话管理页面查看所有对话记录 - **快速转接**:点击"一键介入"按钮,立即将用户转接给人工客服
<think>嗯,用户提出了关于ACK节点审计日志中特定条目的解释需求。这条日志看起来是RBAC授权机制的详细记录,需要拆解每个字段的含义。 用户引用了三份Kubernetes配置相关的资料,但这些和当前问题关联不大。核心还是聚焦在日志中RBAC决策的解析上。这条日志的关键在于它展示了Kubernetes的访问控制过程:"system:controller:generic-garbage-collector"这个服务账号是如何通过集群角色绑定获得权限的。 考虑将日志拆解为五个部分来解释: - authorization.k8s.io/decision字段很直观,就是"allow"允许操作 - authorization.k8s.io/reason字段需要重点展开,它揭示了RBAC的授权链 - ClusterRoleBinding名称"system:controller:generic-garbage-collector"表明这是垃圾回收控制器的专用绑定 - ClusterRole名称"system:controller:generic-garbage-collector"说明角色定义 - ServiceAccount路径"generic-garbage-collector/kube-system"指向具体的权限载体 准备说明RBAC的工作原理:角色定义权限,绑定将角色关联到账号。这里垃圾回收控制器服务账号通过同名绑定获得了同名角色的权限,属于标准的内置权限分配方式。 用户可能是Kubernetes运维人员,看到审计日志后想确认权限分配是否正常。ta特意截取了完整的授权原因字段,说明对RBAC机制有一定了解,但需要确认具体绑定关系的含义。可以补充说明这是正常的系统组件授权行为,避免用户误解为异常日志。 相关问题上,考虑设计关于审计日志使用、RBAC故障排查和安全审计的问题,这些是用户可能继续追问的方向。特别要提醒安全审计时要注意的授权异常模式,这可能是用户查看审计日志的真实目的。 </think>这条ACK节点审计日志详细记录了Kubernetes RBAC授权决策的过程,具体含义拆解如下: 1. **决策结果** `"authorization.k8s.io/decision":"allow"` 表示RBAC系统**允许**了本次操作请求。 2. **授权依据** `"authorization.k8s.io/reason": ...` 后续内容解释了允许操作的具体原因,核心逻辑是: **服务账号** `generic-garbage-collector/kube-system` **通过** `ClusterRoleBinding: "system:controller:generic-garbage-collector"` **绑定了** `ClusterRole: "system:controller:generic-garbage-collector"` **从而获得执行权限**。 3. **关键组件解析** - 📌 `ServiceAccount: generic-garbage-collector/kube-system` Kubernetes系统内置的**垃圾回收控制器服务账号**,用于清理集群中已删除对象的残留资源[^1]。 - 🔗 `ClusterRole: system:controller:generic-garbage-collector` 预定义的**集群级角色**,包含垃圾回收操作所需的API权限集。 - 🔒 `ClusterRoleBinding: system:controller:generic-garbage-collector` 将上述ClusterRole**绑定**到服务账号的授权规则,使服务账号获得角色权限。 4. **行为上下文** 此日志通常出现在垃圾回收控制器执行资源清理时(如删除孤儿对象、完成级联删除等)。该操作受`kube-controller-manager`管理,对应您在引用中创建的Endpoint服务[^1]。 5. **安全合规性** 此授权符合最小权限原则: - 专属服务账号执行专属操作 - 权限范围严格限定在垃圾回收功能 - 通过RoleBinding而非直接赋予高权限 --- ### 相关问题 1. Kubernetes RBAC中ClusterRole与Role的核心区别是什么? 2. 如何审计某个ServiceAccount在集群中的绑定权限? 3. 垃圾回收控制器(generic-garbage-collector)可能触发哪些典型操作事件? 4. 当出现`authorization.k8s.io/decision: forbid`日志时应如何排查? 5. 如何自定义ClusterRoleBinding以扩展系统组件的权限?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值