霍夫变换

在计算机识别中,常常需要从图像中寻找特定的图形, 需要将图像像素按照一定的算法映射到参数空间。Hough变换提供了一种将图像像素信息按坐标映射到参数空间的方法,通过它构建的参数空间可以容易地对特定形状进行判定。

霍夫变换概述:特征提取

该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为霍夫变换结果。

霍夫变换运用两个坐标空间之间的变换将在一个空间中具有相同形状的曲线或直线映射到另一个坐标空间的一个点的形成峰值,从而把检测任意形状的问题转化为统计峰值问题。

在使用霍夫线变换之前,首先需要对图像进行边缘检测的处理,即霍夫线变换的直接输入只能是边缘二值图像。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值