Codeforces721 A. One-dimensional Japanese Crossword (水题)

本文介绍了一维日本填字游戏的加密方法,并提供了一个简单的解决方案来找出由'B'(黑色)和'W'(白色)字符组成的字符串中连续'B'段的数量及长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目连接:http://codeforces.com/contest/721/problem/A


A. One-dimensional Japanese Crossword
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Recently Adaltik discovered japanese crosswords. Japanese crossword is a picture, represented as a table sized a × b squares, and each square is colored white or black. There are integers to the left of the rows and to the top of the columns, encrypting the corresponding row or column. The number of integers represents how many groups of black squares there are in corresponding row or column, and the integers themselves represents the number of consecutive black squares in corresponding group (you can find more detailed explanation in Wikipedia https://en.wikipedia.org/wiki/Japanese_crossword).

Adaltik decided that the general case of japanese crossword is too complicated and drew a row consisting of n squares (e.g. japanese crossword sized 1 × n), which he wants to encrypt in the same way as in japanese crossword.

The example of encrypting of a single row of japanese crossword.

Help Adaltik find the numbers encrypting the row he drew.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 100) — the length of the row. The second line of the input contains a single string consisting of n characters 'B' or 'W', ('B' corresponds to black square, 'W' — to white square in the row that Adaltik drew).

Output

The first line should contain a single integer k — the number of integers encrypting the row, e.g. the number of groups of black squares in the row.

The second line should contain k integers, encrypting the row, e.g. corresponding to sizes of groups of consecutive black squares in the order from left to right.

Examples
input
3
BBW
output
1
2 
input
5
BWBWB
output
3
1 1 1 
input
4
WWWW
output
0
input
4
BBBB
output
1
4 
input
13
WBBBBWWBWBBBW
output
3
4 1 3 
Note

The last sample case correspond to the picture in the statement.




题目大意:找多少段连续的‘B’。


解题思路:直接模拟。


/* ***********************************************
┆  ┏┓   ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃       ┃ ┆
┆┃   ━   ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃       ┃ ┆
┆┃   ┻   ┃ ┆
┆┗━┓ 马 ┏━┛ ┆
┆  ┃ 勒 ┃  ┆      
┆  ┃ 戈 ┗━━━┓ ┆
┆  ┃ 壁     ┣┓┆
┆  ┃ 的草泥马  ┏┛┆
┆  ┗┓┓┏━┳┓┏┛ ┆
┆   ┃┫┫ ┃┫┫ ┆
┆   ┗┻┛ ┗┻┛ ┆
************************************************ */

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <bitset>
using namespace std;

#define rep(i,a,b) for (int i=(a),_ed=(b);i<=_ed;i++)
#define per(i,a,b) for (int i=(b),_ed=(a);i>=_ed;i--)
#define pb push_back
#define mp make_pair
const int inf_int = 2e9;
const long long inf_ll = 2e18;
#define inf_add 0x3f3f3f3f
#define mod 1000000007
#define LL long long
#define ULL unsigned long long
#define MS0(X) memset((X), 0, sizeof((X)))
#define SelfType int
SelfType Gcd(SelfType p,SelfType q){return q==0?p:Gcd(q,p%q);}
SelfType Pow(SelfType p,SelfType q){SelfType ans=1;while(q){if(q&1)ans=ans*p;p=p*p;q>>=1;}return ans;}
#define Sd(X) int (X); scanf("%d", &X)
#define Sdd(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define Sddd(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define reunique(v) v.resize(std::unique(v.begin(), v.end()) - v.begin())
#define all(a) a.begin(), a.end()
#define   mem(x,v)      memset(x,v,sizeof(x))
typedef pair<int, int> pii;
typedef pair<long long, long long> pll;
typedef vector<int> vi;
typedef vector<long long> vll;
inline int read(){int ra,fh;char rx;rx=getchar(),ra=0,fh=1;while((rx<'0'||rx>'9')&&rx!='-')rx=getchar();if(rx=='-')fh=-1,rx=getchar();while(rx>='0'&&rx<='9')ra*=10,ra+=rx-48,rx=getchar();return ra*fh;}
//#pragma comment(linker, "/STACK:102400000,102400000")



int ans[100];

int main()
{
	//freopen("in.txt","r",stdin);
	//freopen("out.txt","w",stdout);
	string s;
	int n;
	n = read();
	cin>>s;
	int cnt = 0;
	for(int i=0;i<s.size();i++)
    {
        int tot = 0;
        while(s[i]=='B' && i<s.size())
        {
            i++;
            tot++;
        }
        if(tot)ans[cnt++] = tot;
    }
    if(cnt)
     {
         cout<<cnt<<endl;
         for(int i=0;i<cnt;i++)
        {
            cout<<ans[i];
            if(i!=cnt-1)cout<<" ";
            else cout<<endl;
        }
     }
    else cout<<0<<endl;

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值