题目大意:给你N个整数,现在要求你将这些整数分块,使得每块的数的数量大于等于k,每块的价值为,这个块里面的所有数 - 这个块里面的最小的数
每块的价值总和的最小值
解题思路:先排个序,从小到大排,这样能使价值达到最小
设dp[i]为前i个数的划分完后的总价值
得到转移方程dp[i] = dp[j] + sum[i] - sum[j] - (i - j) * val[j + 1]
sum[i]指的是前i个数的和,val[i]指第i个数的值
现在假设k > j且k点比j点优
则 dp[j] + sum[i] - sum[j] - (i - j) * val[j + 1] >= dp[k] + sum[i] - sum[k] - (i - k) * val[k + 1]
化简得到 i >= (dp[k] - sum[k] + k * val[k + 1] - dp[j] + sum[j] - j * val[j + 1]) / (val[l + 1] - val[k + 1])
因为i递增,所以得到斜率方程
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 400100;
typedef long long LL;
int n, T;
int que[N];
LL sum[N], val[N], dp[N];
void init() {
for (int i = 1; i <= n; i++)
scanf("%lld", &val[i]);
sort(val + 1, val + 1 + n);
sum[0] = 0;
for (int i = 1; i <= n; i++)
sum[i] = sum[i - 1] + val[i];
}
LL getUp(int j, int k) {
return dp[j] - sum[j] + j * val[j + 1] - (dp[k] - sum[k] + k * val[k + 1]);
}
LL getDown(int j, int k) {
return val[j + 1] - val[k + 1];
}
void solve() {
int head, tail;
head = tail = 0;
dp[0] = 0;
que[tail++] = 0;
for (int i = 1; i <= n; i++) {
while (head + 1 < tail && getUp(que[head + 1], que[head]) <= getDown(que[head + 1], que[head]) * i) head++;
dp[i] = dp[que[head]] + sum[i] - sum[que[head]] - (i - que[head]) * val[que[head] + 1];
if (i >= 2 * T - 1) {
int t = i - T + 1;
while (head + 1 < tail && getUp(t, que[tail - 1]) * getDown(que[tail - 1], que[tail - 2]) <= getUp(que[tail - 1], que[tail - 2]) * getDown(t, que[tail - 1])) tail--;
que[tail++] = t;
}
}
printf("%lld\n", dp[n]);
}
int main() {
while (scanf("%d%d", &n, &T) != EOF) {
init();
solve();
}
return 0;
}