解题思路:可以去看一下有关于双调欧几里德旅行商问题的文章,我这里只是讲解一下为什么最后输出的是dp[n][n-1] + dis[n][n-1],解决上次没有解决的问题
本来到最后面,要求的dp[n][n] = min(dp[i][n] + dis[i][n])
因为 dp[i][n] = dp[i][n - 1] + dis[n][n-1]
所以 dp[n][n] = min(dp[i][n - 1] + dis[n][n-1] + dis[i][n])
又因为dp[n][n-1] = min(dp[i][n-1] + dis[i][n]),且dp[n][n-1]前面已经求到
所以dp[n][n] = dp[n][n - 1] + dis[n][n-1]
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 210
const double INF = 0x3f3f3f3f3f3f3f3f;
struct Point {
int x, y;
}P[N];
double dp[N][N];
double dis[N][N];
int n;
double len(Point a, Point b) {
return sqrt((a.x - b.x) * (a.x - b.x) * 1.0 + (a.y - b.y) * (a.y - b.y) * 1.0);
}
void init() {
for (int i = 1; i <= n; i++)
scanf("%d%d", &P[i].x, &P[i].y);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
dis[i][j] = len(P[i], P[j]);
}
}
void solve() {
dp[2][1] = dp[1][2] = dis[1][2];
for (int i = 3; i <= n; i++) {
dp[i][i - 1] = INF;
for (int j = 1; j < i - 1; j++) {
dp[i][j] = dp[i - 1][j] + dis[i - 1][i];
dp[i][i - 1] = min(dp[i][i-1], dp[i-1][j] + dis[j][i]);
}
}
printf("%.2lf\n", dp[n][n-1] + dis[n][n - 1]);
}
int main() {
while (scanf("%d", &n) != EOF) {
init();
solve();
}
return 0;
}