离散数学(Discrete Math)
- 谓词逻辑
目录
Universal Quantifier VS Existential Quantifier 对比
The uniqueness quantifier 唯一量词 ∃!
Binding and Free Variables (静态变量和可变变量)
Defs
Predicate Logic 谓词逻辑
The area of logic that deals with predicates and quantitfiers is called the predicate calculus.
Ex:P(x,y,z) = “x=y+z”,故P(3,2,1) = True P(1,2,1) = False
Universal Quantifier 全称量词
The universal quantification of P(x) is the statement “P(x) for all value of x in the domain.”
∀ is called the universal quantifier.
∀x P(x) is read “for all x P(x) ” or ”for every x P(x)” or ”任取x对于P(x)……”
Key concept :
The Domain 语集/论域 .The domain of discourse , and universal of discourse.
Existential Quantifier 存在量词
The existential quantification of P(x) is the statement “ There exists an element x in the domain such that P(x).”
∃ is called the existential quantifier.
∃x P(x) is read “ There exists an element x in the domain such that P(x). ” or ” 存在x对于P(x)…… ”
The statement is false if and only if ∀x ┐P(x) , i.e., (后接内容解释上述内容,e.g.是for example的意思)
┐(∃x P(x)) ≡ ∀x ┐P(x)
Universal Quantifier VS Existential Quantifier 对比
| Statement |

本文深入探讨了离散数学中的谓词逻辑,包括全称量词、存在量词的概念及应用,对比它们的区别,并介绍了唯一量词的概念。此外,还讨论了静态变量和可变变量在谓词逻辑中的作用,以及交换律和结合律的应用。
最低0.47元/天 解锁文章
1053

被折叠的 条评论
为什么被折叠?



