1. Java泛型的目的:
a. Java语言引入泛型的好处是安全简单。可以将运行时错误提前到编译时错误。
在java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,“任意化”带来的缺点是要做显式的强制类型转换,而这种转换是要求开发者对实际参数类型可以预知的情况下进行的。对于强制类型转换错误的情况,编译器可能不提示错误,在运行的时候才出现异常,这是一个安全隐患。泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,提高代码的重用率。
b. 消除强制类型转换。
消除源代码中的许多强制类型转换。这使得代码更加可读,并且减少了出错机会。所有的强制转换都是自动和隐式的。
c. 提高性能。
Lits list1 = new ArrayList();
list1.add("优快云_SEU_Cavin ");
String str1 = (String)list1.get(0);
List<String> list2 = new ArrayList<String>();
list2.add("优快云_SEU_Cavin ");
String str2 = list2.get(0);
对于上面的两段程序,由于泛型所有工作都在编译器中完成,javac编译出来的字节码是一样的(只是更能确保类型安全),那么何谈性能提升呢?是因为在泛型的实现中,编译器将强制类型转换插入生成的字节码中,但是更多类型信息可用于编译器这一事实,为未来版本的 JVM 的优化带来了可能。
2. java泛型接口、泛型类简介
泛型类中的类型参数几乎可以用于任何可以使用接口名、类名的地方,下面的代码示例展示了 JDK 5.0 中集合框架中的 Map 接口的定义的一部分:
public interface Map<K, V> {
public void put(K key, V value);
public V get(K key);
}
当声明或者实例化一个泛型的对象时,必须指定类型参数的值:
Map<String, String> map = newHashMap<String, String>();
对于常见的泛型模式,推荐的名称是:
K ——键,比如映射的键。
V ——值,比如 List 和 Set 的内容,或者 Map 中的值。
E ——异常类。
T ——泛型。
3. 泛型不是协变的
关于泛型的混淆,一个常见的来源就是假设它们像数组一样是协变的。其实它们不是协变的。List<Object> 不是 List<String> 的父类型。
如果 A 扩展 B,那么 A 的数组也是 B 的数组,并且完全可以在需要 B[] 的地方使用 A[]:
Integer[] intArray = new Integer[10];
Number[] numberArray = intArray;
上面的代码是有效的,因为一个Integer 是 一个 Number,因而一个 Integer 数组是 一个 Number 数组。但是对于泛型来说则不然。下面的代码是无效的:
List<Integer> intList = newArrayList<Integer>();
List<Number> numberList = intList; //invalid
最初,大多数 Java 程序员觉得这缺少协变很烦人,或者甚至是“坏的(broken)”,但是之所以这样有一个很好的原因。如果可以将List<Integer> 赋给 List<Number>,下面的代码就会违背泛型应该提供的类型安全:
List<Integer> intList = newArrayList<Integer>();
List<Number> numberList = intList; //invalid
numberList.add(new Float(3.1415));
因为 intList 和 numberList 都是有别名的,如果允许的话,上面的代码就会让您将不是 Integers 的东西放进 intList 中。
4. 可变参数与泛型方法 泛型方法与可变参数列表能很好地共存:
package Generics;
import java.util.ArrayList;
import java.util.List;
public class GenericVarargs {
public static <T> List<T> makeList(T... args){
List<T> result = new ArrayList<T>();
for(T item:args)
result.add(item);
return result;
}
public static void main(String[] args) {
List ls = makeList("A");
System.out.println(ls);
ls = makeList("A","B","C");
System.out.println(ls);
ls = makeList("ABCDEFGHIJKLMNOPQRSTUVWXYZ".split(""));
System.out.println(ls);
}
}
/*
[A]
[A, B, C]
[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z]
*/
静态方法上的泛型:静态方法无法访问类上定义的泛型。如果静态方法操作的引用数据类型不确定的时候,必须要将泛型定义在方法上。
public static<Q> void function(Q t) {
System.out.println("function:"+t);
}
5. 泛型的擦除
package generics;
import java.util.*;
public class ErasedTypeEquivalence {
public static void main(String[] args) {
Class c1 = new ArrayList<String>().getClass();
Class c2 = new ArrayList<Integer>().getClass();
System.out.println(c1 == c2);
}
} /*
* Output: true
*/// :~
在泛型内部,无法获得任何有关泛型参数类型的信息。
ArrayList<String>和ArrayList<Integer>是相同的类型。
6. 擦除的补偿
要想在表达式中使用类型,需要显式地传递类型的class对象。package generics;
class Building {
}
class House extends Building {
}
public class ClassTypeCapture<T> {
Class<T> kind;
public ClassTypeCapture(Class<T> kind) {
this.kind = kind;
}
public boolean f(Object arg) {
return kind.isInstance(arg);
}
public static void main(String[] args) {
ClassTypeCapture<Building> ctt1 = new ClassTypeCapture<Building>(Building.class);
System.out.println(ctt1.f(new Building()));
System.out.println(ctt1.f(new House()));
ClassTypeCapture<House> ctt2 = new ClassTypeCapture<House>(House.class);
System.out.println(ctt2.f(new Building()));
System.out.println(ctt2.f(new House()));
}
} /*
* Output: true true false true
*/// :~
7. 泛型数组为什么不能被创建
package generics;
public class Erased<T> {
private final int SIZE = 100;
public static void f(Object arg) {
if (arg instanceof T) {
} // Cannot make a static reference to the non-static type T
T var = new T(); // Error
T[] array = new T[SIZE]; // Error
T[] array = (T) new Object[SIZE]; // Unchecked warning
}
} /// :~
List<Integer>,List<String>与List在运行期并没有区别,所以List<String>放入List<Integer>并不会产生ArrayStoreException异常。但是String s=stringLists[0].get(0);将会抛出ClassCastException异常。如果允许创建泛型数组,就绕过了泛型的编译时的类型检查,将List<Integer>放入List<String>[],并在实际存的是Integer的对象转为String时抛出异常。
8. 类型通配符
类型通配符一般是使用 ? 代替具体的类型实参。注意了,此处是类型实参,而不是类型形参!且Box<?>在逻辑上是Box<Integer>、Box<Number>...等所有Box<具体类型实参>的父类。由此,我们依然可以定义泛型方法,来完成此类需求。
public class GenericTest {
public static void main(String[] args) {
Box<String> name = new Box<String>("corn");
Box<Integer> age = new Box<Integer>(712);
Box<Number> number = new Box<Number>(314);
getData(name);
getData(age);
getData(number);
}
public static void getData(Box<?> data) {
System.out.println("data :" + data.getData());
}
}
有时候,我们还可能听到类型通配符上限和类型通配符下限。具体有是怎么样的呢?
在上面的例子中,如果需要定义一个功能类似于getData()的方法,但对类型实参又有进一步的限制:只能是Number类及其子类。此时,需要用到类型通配符上限。
public class GenericTest {
public static void main(String[] args) {
Box<String> name = new Box<String>("corn");
Box<Integer> age = new Box<Integer>(712);
Box<Number> number = new Box<Number>(314);
getData(name);
getData(age);
getData(number);
//getUpperNumberData(name); // 1
getUpperNumberData(age); // 2
getUpperNumberData(number); // 3
}
public static void getData(Box<?> data) {
System.out.println("data :" + data.getData());
}
public static void getUpperNumberData(Box<? extends Number> data){
System.out.println("data :" + data.getData());
}
}
此时,显然,在代码//1处调用将出现错误提示,而//2 //3处调用正常。
类型通配符上限通过形如Box<? extends Number>形式定义,相对应的,类型通配符下限为Box<? super Number>形式,其含义与类型通配符上限正好相反,在此不作过多阐述了
Java泛型与C++模板的区别
由于架构设计上的差异,Java泛型和C++模板有如下很多不同点;
1. C++模板可以使用int等基本数据类型。Java则不行,必须转而使用Integer
2. Java中,可以将模板的类型参数限定为某种特定类型。例如,你可能会使用泛型实现CardDeck,并规定参数必须扩展自CardGame。
3. C++中,类型参数可以实例化,Java不可以实例化
4. Java中,类型参数(即MyClass<Foo>中的Foo)不能用于静态方法和变量,因为他们会被MyClass<Foo>和MyClass<Bar>共享。但在C++中,这些类是不同的,类型参数可以用于静态方法和静态变量。
5. 在Java中,不管类型参数是什么,MyClass的所有实例都是同一类型。类型参数会在运行时被抹去。而C++中,参数类型不同,实例类型也不同。