HDU 3001 Travelling

本文探讨了一位旅行爱好者如何在有限的城市和道路中,通过使用3进制计算方法,寻找最少费用遍历所有城市的最优路径。通过输入城市数量、道路连接和费用,输出了经过所有城市的最短总费用,或者当无法找到合适路径时输出-1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

After coding so many days,Mr Acmer wants to have a good rest.So travelling is the best choice!He has decided to visit n cities(he insists on seeing all the cities!And he does not mind which city being his start station because superman can bring him to any city at first but only once.), and of course there are m roads here,following a fee as usual.But Mr Acmer gets bored so easily that he doesn't want to visit a city more than twice!And he is so mean that he wants to minimize the total fee!He is lazy you see.So he turns to you for help.
 

Input

There are several test cases,the first line is two intergers n(1<=n<=10) and m,which means he needs to visit n cities and there are m roads he can choose,then m lines follow,each line will include three intergers a,b and c(1<=a,b<=n),means there is a road between a and b and the cost is of course c.Input to the End Of File.
 

Output

Output the minimum fee that he should pay,or -1 if he can't find such a route.
 

Sample Input

2 1 1 2 100 3 2 1 2 40 2 3 50 3 3 1 2 3 1 3 4 2 3 10
 

Sample Output

100 90 7


题意:一个Acmer要出去旅行,有n个城市m条路,一个城市不能去2次以上,求经过所有城市一次的最短路。

思路:3进制计算,就是要开一个数组存3进制数了。

AC代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <stdlib.h>

using namespace std;
const int INF=0x1f1f1f1f;
int mp[15][15];
int dp[59050][15];
int pow3[12]={0,1,3,9,27,81,243,729,2187,6561,19683,59049};
int n,m;
int p[59050][15];


int main(){
    for(int i=0;i<59050;i++){
        int temp=i;
        for(int j=1;j<=10;j++){
            p[i][j]=temp%3;
            temp/=3;
            if(temp==0) break;
        }
    }
    while(~scanf("%d%d",&n,&m)){
        memset(mp,INF,sizeof(mp));
        for(int i=0;i<m;i++){
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            if(c<mp[a][b])//竟然有多重边T_T,坑死我啦;
                mp[a][b]=mp[b][a]=c;
        }
        memset(dp,INF,sizeof(dp));
        for(int i=1;i<=n;i++) dp[pow3[i]][i]=0;
        bool flag;
        int ans=INF;
        for(int s=0;s<pow3[n+1];s++){
            flag=true;
            for(int i=1;i<=n;i++){
                if(p[s][i]==0) flag=false;
                if(dp[s][i]==INF) continue;
                for(int j=1;j<=n;j++){
                    if(i==j) continue;
                    if(p[s][j]>=2) continue;
                    if(mp[i][j]==INF) continue;
                    int ts=s+pow3[j];
                    dp[ts][j]=min(dp[ts][j],dp[s][i]+mp[i][j]);
                }
            }
            if(flag){
                for(int k=1;k<=n;k++){
                    ans=min(ans,dp[s][k]);
                }
            }
        }
        if(ans==INF) printf("-1\n");
        else printf("%d\n",ans);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值