437路径总和III(dfs+前缀和)

题目链接:437. 路径总和 III - 力扣(LeetCode)

给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum路径 的数目。

路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。

示例 1:

img

输入:root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
输出:3
解释:和等于 8 的路径有 3 条,如图所示。

示例 2:

输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:3

提示:

  • 二叉树的节点个数的范围是 [0,1000]

  • -109 <= Node.val <= 109

  • -1000 <= targetSum <= 1000

每一条路径都可以视为一个数组,那么这题就变成了统计在某个数组中和为target的子序列的数量,这显然可以使用前缀和解决。

首先,要得到每一条路径所经过的节点值,就需要使用深度优先搜索。当我们搜索到节点node时,计算出其前缀和为curr,我们希望在根节点root到node之间,存在这么一个节点node1,使得node1到node的和为target,那么这就意味着node1的前缀和为curr-target.为了记录数量,我们使用哈希表。键为前缀和,值为出现次数。遍历到节点node时,看哈希表中是否存在curr-target这个键,如果存在,那么就记录curr-target这个路径和在这个路径的出现次数。再递归统计左右子树中出现目标值的次数,最后回溯,进入另一个分支即可。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map<uint64_t,int>cnt;//键:前缀和;值:出现次数
    int dfs(TreeNode*root,uint64_t curr,int target) {
        if(!root) return 0;
        int res=0;
        curr+=root->val;
        if(cnt.count(curr-target)) {
            //如果存在curr-target这个键
            res=cnt[curr-target];//那么res为在这条路径上的出现次数
        }
        cnt[curr]++;
        res+=dfs(root->left,curr,target);
        res+=dfs(root->right,curr,target);
        cnt[curr]--;//回溯
        return res;
    }
    int pathSum(TreeNode* root, int targetSum) {
        cnt[0]=1;//对于根节点来说,它的前缀和为0,因此算一条路径
        return dfs(root,0,targetSum);
    }
};

### LeetCode Hot 100 路径总和 III Java 解决方案 #### 方法一:暴力递归法 此方法通过遍历每一个节点并尝试找到从该节点出发的所有可能路径,判断这些路径的和是否等于目标值。 ```java class Solution { int pathnumber; public int pathSum(TreeNode root, long sum) { if (root == null) return 0; Sum(root, sum); pathSum(root.left, sum); pathSum(root.right, sum); return pathnumber; } public void Sum(TreeNode root, long sum) { if (root == null) return; sum -= root.val; if (sum == 0) { pathnumber++; } Sum(root.left, sum); Sum(root.right, sum); } } ``` 这种方法虽然简单直观,但在处理大规模数据时效率较低。对于某些极端情况下的输入,可能会导致性能问题[^1]。 #### 方法二:优化后的前缀和加哈希表 为了提高算法效率,可以采用前缀和的概念加上哈希表来记录已经访问过的节点及其累积值。这样可以在一次深度优先搜索过程中完成计算,而不需要重复遍历子树。 ```java import java.util.HashMap; public class Solution { private HashMap<Long, Integer> prefixSumCount = new HashMap<>(); public int pathSum(TreeNode root, int targetSum) { prefixSumCount.put(0L, 1); return findPath(root, 0L, targetSum); } private int findPath(TreeNode node, long currentSum, int targetSum) { if (node == null) return 0; // 更新当前累计和 currentSum += node.val; // 计算满足条件的数量 int numPathsToCurrentNode = prefixSumCount.getOrDefault(currentSum - targetSum, 0); // 将当前累计和加入map中 prefixSumCount.put(currentSum, prefixSumCount.getOrDefault(currentSum, 0) + 1); // 继续向下探索左右子树 int leftResult = findPath(node.left, currentSum, targetSum); int rightResult = findPath(node.right, currentSum, targetSum); // 移除当前结点的影响以便回溯到父级调用者处继续其他分支的查找工作 prefixSumCount.put(currentSum, prefixSumCount.get(currentSum) - 1); return numPathsToCurrentNode + leftResult + rightResult; } } ``` 这种改进的方法不仅提高了时间复杂度至 O(n),而且空间上也更加高效,适用于更广泛的情况[^2]。 #### 数据约束说明 题目规定了二叉树中的节点数量范围以及各节点取值区间: - 二叉树的节点个数的范围是 [0,1000] - `-10^9 <= Node.val <= 10^9` - `-1000 <= targetSum <= 1000` 因此,在实现解决方案时需要注意数值类型的选取以防止溢出等问题的发生[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值