题目:
http://acm.hdu.edu.cn/showproblem.php?pid=5293
题意:
给定一棵树,再给出若干树上的链,每条链拥有一个权值,问如何挑选这些链能使得权值之和最大,且被选中的链没有公共结点,求最大权值
思路:
看题解的过程中有看到用离线lca+时间戳+树形dp解法的,感觉那种解法会更加高大上...嗯不会离线lca所以这题用了树链剖分+线段树+树形dp解的
因为题目给树链的方式只给了该链的起止结点,对于这种求树上两点路径直观感觉就是树链剖分,先剖分再搜出每条链的lca,然后做树形DP
dp[i]: 以i为根的子树,能得到的最大权值
sum[i]: sum[i] = dp[k] 其中k为i的所有子结点
状态转移方程为:
不选中i点,则所有lca为i的链都不会被选中: dp[i] = sum[i]
选中i点,则对所有lca为i的链j均有: dp[i] = value[j] + (sum[k] - dp[k]) + dp[i]
其中value[j]为链j的权值,k为所有在链j上的节点
到此为止用到了树链剖分和树形dp,然而会超时...观察到状态转移时用到了树上某条链的结点sum之和 及 dp之和,用线段树维护这两个和,才可以在规定时间内通过
代码:
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<functional>
#pragma comment(linker, "/STACK:102400000,102400000")//C++
using namespace std;
const double PI = 3.141592653589793238462643383279502884197169399;
const int MAXINT = 0x7fffffff;
const int MAXSIZE = 100000 + 5;
int n;
int fa[MAXSIZE], siz[MAXSIZE], son[MAXSIZE], dep[MAXSIZE], top[MAXSIZE], tid[MAXSIZE];
int dp[MAXSIZE], sum[MAXSIZE];
//vector<int> l[MAXSIZE];
int lsum,lfirst[MAXSIZE],lnext[MAXSIZE],lto[MAXSIZE];
int first[MAXSIZE], gnext[2*MAXSIZE], to[2*MAXSIZE], edge;
int tsum;
int res;
struct noder{
int u, v, weight;
};
noder arr[MAXSIZE];
struct node{
int l, r;
int dsum,ssum;
int mid(){
return (l + r) / 2;
}
};
node tree[MAXSIZE * 4 + 5];
//初始状态 BuildTree(0,1,n)
void BuildTree(int root, int l, int r){
tree[root].l = l; tree[root].r = r;
tree[root].dsum = 0; tree[root].ssum = 0;
if (l != r){
BuildTree(root * 2 + 1, l, (l + r) / 2);
BuildTree(root * 2 + 2, (l + r) / 2 + 1, r);
}
return;
}
//线段节点初始化 (0,i,w)
void t_insert(int root, int i, int d, int s){
if (tree[root].l == tree[root].r){
tree[root].ssum = s;
tree[root].dsum = d;
return;
}
else{
if (i <= tree[root].mid())
t_insert(root * 2 + 1, i, d, s);
else t_insert(root * 2 + 2, i, d, s);
tree[root].ssum = tree[(root<<1) + 1].ssum + tree[(root<<1) + 2].ssum;
tree[root].dsum = tree[(root<<1) + 1].dsum + tree[(root<<1) + 2].dsum;
}
}
//查询线段[st,en] (0,st,en)
void t_query(int root, int st, int en){
if (tree[root].l == st && tree[root].r == en){
res -= tree[root].dsum;
res += tree[root].ssum;
return;
}
if (st>tree[root].mid()){
t_query(root * 2 + 2, st, en);
}
else if (en <= tree[root].mid()){
t_query(root * 2 + 1, st, en);
}
else{
t_query(root * 2 + 1, st, tree[root].mid());
t_query(root * 2 + 2, tree[root].mid() + 1, en);
}
return;
}
void dfs_1(int v,int father,int depth){
siz[v] = 1;
dep[v] = depth;
fa[v] = father;
son[v] = 0;
int i=first[v];
while (i){
int u = to[i];
if (u!=father){
dfs_1(u,v,depth+1);
siz[v]+=siz[u];
if (siz[u]>siz[son[v]]) son[v] = u;
}
i = gnext[i];
}
return;
}
void dfs_2(int v, int tp){
tid[v] = ++tsum;
top[v] = tp;
if (son[v] != 0){
dfs_2(son[v], top[v]); //使重链在线段上连续
}
int i=first[v];
while (i){
int u = to[i];
if (u!=fa[v] && u!=son[v]){
dfs_2(u, u);
}
i = gnext[i];
}
return ;
}
int findLca(int u, int v){
int f1 = top[u], f2 = top[v];
int lca;
while (f1!=f2){
if (dep[f1]<dep[f2]){
swap(f1,f2);
swap(u,v);
}
u = fa[f1];
f1 = top[u];
}
if (u == v) return u;
else{
if (dep[u]>dep[v]) swap(u,v);
return u;
}
}
void l_insert(int a,int b){
lnext[++lsum] = lfirst[a];
lfirst[a] = lsum;
lto[lsum] =b;
}
void g_insert(int a, int b){
gnext[++edge] = first[a];
first[a] = edge;
to[edge] = b;
}
void cal(int u,int v){
int f1=top[u],f2=top[v];
while (f1!=f2){
if (dep[f1]<dep[f2]){
swap(f1,f2);
swap(u,v);
}
t_query(0, tid[f1], tid[u]);
u=fa[f1];
f1=top[u];
}
if (u!=v){
if (dep[u] > dep[v]) swap(u,v);
t_query(0, tid[u], tid[v]);
}
else t_query(0,tid[u],tid[v]);
return ;
}
void deal(int v){
int e = first[v];
while (e){
int u = to[e];
if (u !=fa[v]){
deal(u);
sum[v] += dp[u];
}
e = gnext[e];
}
dp[v] = sum[v];
t_insert(0, tid[v], dp[v], sum[v]);
int temp = dp[v];
int i=lfirst[v];
while (i){
int va = arr[lto[i]].u, vb = arr[lto[i]].v;
res = arr[lto[i]].weight;
cal(va,vb);
res += dp[v];
//cout<<"temp: "<<i<<" "<<res<<endl;
if (res>temp) temp=res;
i = lnext[i];
}
if (temp>dp[v]){
dp[v] = temp;
t_insert(0, tid[v], dp[v], sum[v]);
}
// cout<<"deal done! "<<v<<endl;
// cout<<dp[v]<<" "<<sum[v]<<endl;
// cout<<"deal done! "<<v<<endl;
}
void init(){
memset(lfirst,0,sizeof(lfirst));
memset(first,0,sizeof(first));
memset(siz,0,sizeof(siz));
memset(son,0,sizeof(son));
memset(dep,0,sizeof(dep));
memset(fa,0,sizeof(fa));
memset(top,0,sizeof(top));
memset(dp,0,sizeof(dp));
memset(sum,0,sizeof(sum));
edge=0;
tsum=0;
lsum=0;
}
int main(){
int total,m;
cin>>total;
while (total--){
init();
scanf("%d %d",&n,&m);
for (int i=1;i<n;++i){
int a,b;
scanf("%d %d",&a,&b);
g_insert(a,b);
g_insert(b,a);
}
dfs_1(1,0,0);
dfs_2(1,1);
for (int i=0;i<m;++i){
scanf("%d %d %d",&arr[i].u, &arr[i].v, &arr[i].weight);
int lca = findLca(arr[i].u, arr[i].v);
l_insert(lca,i);
}
BuildTree(0,1,tsum);
deal(1);
printf("%d\n",dp[1]);
}
return 0;
}