题目:
http://acm.hdu.edu.cn/showproblem.php?pid=5289
题意:
给定一个序列,及界限值k,问该序列中存在多少个区间,满足区间内任意两个数字之差的绝对值小于k
思路:
利用RMQ算法,用nlogn的时间复杂度先算出每个区间的最大最小值
枚举每个区间的左值L,二分搜索最大的区间右值R
则最大区间[L,R]的贡献为R-L+1
代码:
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<functional>
#pragma comment(linker, "/STACK:102400000,102400000")//C++
using namespace std;
const double PI = 3.141592653589793238462643383279502884197169399;
const int MAXINT = 0x7fffffff;
const int MAXSIZE = 100000 + 5;
int arr[MAXSIZE];
int dmin[MAXSIZE][32],dmax[MAXSIZE][32];
void RMQ_init(int A[],int len){
//int n=A.size();
for (int i=0;i<len;++i){
dmin[i][0] = A[i];
dmax[i][0] = A[i];
}
for (int j=1;(1<<j)<=len;++j)
for (int i=0;i+(1<<j)-1<len;++i){
dmin[i][j] = min(dmin[i][j-1],dmin[i+(1<<(j-1))][j-1]);
dmax[i][j] = max(dmax[i][j-1],dmax[i+(1<<(j-1))][j-1]);
}
return ;
}
int RMQ_min(int L, int R){
int k=0;
while (1<<(k+1) <= R-L+1) k++;
return min(dmin[L][k],dmin[R-(1<<k)+1][k]);
}
int RMQ_max(int L, int R){
int k=0;
while (1<<(k+1) <= R-L+1) k++;
return max(dmax[L][k],dmax[R-(1<<k)+1][k]);
}
bool RMQ_check(int L, int R, int k){
if (RMQ_max(L,R)-RMQ_min(L,R) < k)
return true;
else return false;
}
int main(){
int total;
cin>>total;
while (total--){
memset(arr,0,sizeof(arr));
memset(dmin,0,sizeof(dmin));
memset(dmax,0,sizeof(dmax));
int n,k;
scanf("%d %d",&n,&k);
for (int i=0;i<n;++i) scanf("%d",arr+i);
RMQ_init(arr,n);
//cout<<RMQ_min(0,3)<<endl;
long long ans=0;
for (int i=0;i<n;++i){
int l = i, r = n-1;
while (l<=r){
//cout<<"i&r&l: "<<i<<" "<<l<<" "<<r<<endl;
int mid = (l+r)>>1;
if (RMQ_check(i,mid,k)){
l = mid+1;
}
else r = mid-1;
}
//cout<<"l&r: "<<i<<" "<<l-1<<endl;
ans+=l-i;
}
cout<<ans<<endl;
}
return 0;
}