白骨精组入门, 来自老美的超级智力测验题

这是一个包含13道智力挑战题的集合,题目难度较高,旨在测试解答者的逻辑思维能力和解决问题的能力。这些问题涵盖了图形分析、数学推理等多个方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面的许多题目来自著名的Ron Hoeflin的超级智力测验. 按照Ron Hoeflin的说法, 如果你能在前11到题里做对6, 你的智商超过137,于百里挑一了.一般程序员智商可能也就120左右.

做题没有时间限制, 除了你不应当让别人帮助或者去网上找现成答案外(目前找到现成答案的可能性很小的, 别费事了), 也没有任何其他限制.  另外, 题目比较难, 你可以先把本网页保存在本地, 慢慢做. 看看你能做出几道. 如果你做出来了, 请不要把结果发布到网上,  否则, 别人就无法客观的测试了.  另外这也是Ron Hoeflin的请求.

做题的答案可发站内消息给我, 请你起码尝试5道题后再发.

背景:

Ron Hoeflin 是美国许多著名的超级智力测验的设计者, 是几个高智商者协会的发起人. 其中包括, TOPS(百分之一尖子), OATH(千分之一尖子), Prometheus(三万分之一尖子), Mega(百万分之一尖子) 等.
智商的定义,对于儿童和青少年,智商是智力年龄/实际年龄,对于成人,智商是按照智力
在人群中的统计分布通过归一化来定义的,智商100定义为分布的平均值,89-111被定义为包括了人口中的50%。 这样,0-137包括了人群的99%. 如果你的智商>137, 那你就算是百里挑一了。

 

智商并不代表人的全部能力,但是对于科学与技术来说,基本上,人类的所有创造发明与智商低于120的人都没有什么关系。

 

Kakrat

 

1. 最少需要几个小方纸片(正方)才能组成右边的图形. 注意, 纸片大小可以不一, 被盖住的边看不见.

2. Suppose that three intersecting(相交) rectangles(矩形) are drawn on a flat(平) surface(面). What is the maximum number of completely bounded areas, not further subdivided, that can thereby(因此) be formed, considering only the sides of the rectangles as boundaries? (The figure to the right illustrates two intersecting rectangles.)

3. Three mutually intersecting circles (as illustrated to the right) can yield a maximum of seven completely bounded areas, counting only areas that are not further subdivided. What is the maximum number of completely bounded areas not further subdivided that can be obtained using three mutually intersecting circles plus two triangles?

4. The figure illustrating this problem shows a scale(天平) for weighing objects, consisting of a lever resting on a fulcrum(支点) with weighing pans at each end of the lever equidistant from the fulcrum. Suppose that the objects to be weighed may range from 1 to 100 pounds at 1-pound intervals: 1, 2, 3, ..., 98, 99, 100. After placing one such weight on either of the two weighing pans, one or more pre-calibrated weights are then placed in either or both pans until a balance is achieved, thus determining the weight of the object. If the relative positions of the lever, fulcrum, and pans may not be changed, and if one may not add to the initial set of pre-calibrated weights, what is the minimum number of such weights that would be sufficient to bring into balance any of the 100 possible objects?

5. A certain lock(船闸) for raising and lowering barges(船) from one river level to another is a rectangular parallelepiped(矩型体) 200 meters long, 50 wide, and 20 deep. A barge is floating in the lock that is also a rectangular parallelepiped measuring 80 meters long, 25 wide, and 5 deep. The barge, containing 3,000 barrels(桶) of toxic(有毒) chemicals, displaces(排水) 8,000 long tons of water. The water has a density of one long ton per cubic meter. Each barrel is watertight, with a volume of one cubic meter and a weight of two long tons. A group of terrorists render the lock inoperable and attach a time bomb to the side of the barge set to go off in three hours. The barge contains elevators for moving barrels quickly to the deck, but the crew(船员) is too shorthanded(人手不够) to roll the heavy barrels up an inclined(倾斜的) plane in the time allotted(允许的). The deck(甲板) is only ten centimeters below the top edge of the lock, from which the barrels could be rolled to dry land. If no water is entering or leaving the lock, how many barrels at a minimum would have to be rolled into the water in the lock in order to raise the level of the barge so that its deck would be even with or slightly above the top edge of the lock so that the remaining barrels can be rolled to dry land?

6. In going from square A to square B in the figure, what is the maximum number of squares that a chess knight(马) could touch, including A and B, if the knight makes only permissible moves for a chess knight (consult a book on how to play chess if in doubt), does not touch any square more than once, and does not go outside the 16 squares shown?

(knight:, 走日, 和中国象棋同, 但是是在格中, 而不是格点上.)

7. Suppose a modified version of the dice(骰子)game is played with two regular (i.e., perfectly symmetrical) dodecahedra(正十二面体,面为正五边形). Each die (骰子) has its sides numbered from 1 to 12 so that after each throw of the dice the sum of the numbers on the top two surfaces of the dice would range from 2 to 24. If a player gets the sum 13 or 23 on his first throw, he wins. If he gets 2, 3, or 24 on his first throw, he loses. If he gets any other sum (his point), he must throw the dice again. On this or any subsequent(后续) throw, the player loses if he gets the sum 13, and wins if he gets his point (the sum in previous throw), but must throw both dice again if any other sum occurs. The player continues until he either wins or loses. To a hundreds of one percent(近似到万分之一), what is the probability(概率) that a dice thrower will win with this game?

8. Suppose a tetrahedral-shaped(正四面体形) crystal is formed, like a giant pile of apples or oranges at a greengrocer's store (果菜店), consisting of one atom on the top layer, three on the next-to-top layer, six on the third layer, ten on the fourth layer, and so forth as illustrated below(如下所示). If there are exactly 1,000,000 layers, specify the total number of atoms in the entire crystal. Give an exact answer, not an approximate(近似) one or a formula for making the calculation. (不得编软件去算)

9. Suppose 27 identical cubical chunks(块) of cheese(奶酪) are piled together to form a cubical stack, as illustrated to the right. What is the maximum number of these cheese chunks through which a mouse of negligible(可忽略) size could munch(啃) before exiting the stack, assuming that the mouse always travels along straight lines that pass through the centers of the chunks parallel or perpendicular to their sides, always makes a 90 degree turn at the center of each chunk it enters, and never enters any chunk more than once?

10. Suppose there are ants(蚂蚁) at each vertex(顶点) of a triangle and they all simultaneously(同时地) crawl(爬) along a side of the triangle to the next vertex. The probability that no two ants will encounter(遇见) one another is 2/8, since the only two cases in which no encounter occurs is when all the ants go left, i.e., clockwise -- LLL -- or all go right, i.e., counterclockwise -- RRR. In the six other cases -- RRL, RLR, RLL, LLR, LRL, and LRR -- an encounter occurs. Now suppose that, analogously(类似的), there is an ant at each vertex of a cubic and that the ants all simultaneously move along one edge of the cubic to the next vertex, each ant choosing its path randomly. What is the probability that no two ants will encounter one another, either en route(在路上) or at the next vertex? Express your answer reduced(化减) to lowest common denominators(最小的分母), e.g., 2/8 must be reduced to 1/4.

 

11. 假设已知一个盒子中有10个围棋子. 这些围棋子是按照掷硬币的结果来放入的. 如果硬币正面朝上, 就放黑子, 反之放白子. 而硬币朝上还是朝下的概率是完全相等的. 现在, 从盒子中完全随机的取十次棋子, 每取一次, 记录下棋子的颜色, 然后再放回去, 从新摇匀, 以保证下次取的棋子仍然是完全随机的.  现在, 取的结果刚好是10个白子, 那么, 盒子中实际上全是白子的几率是多大?  结果近似到万分之一就可以了.

12. Z= Encrypt(X,Y) 表示以X为密钥对Y进行加密, 结果为Z,

问题是, 假使 C=Encrypt(P,P), 那么对于一个一般的加密函数Encrypt, 是否不存在

另外一个P2!= P,但是Encrypt(P2,P2) = Encrypt(P,P)?

 

 注意, 我说的是一般的加密函数, 也就是说所有的满足以下条件的函数:

a. 对与任何key, 如果P2!=P, 那么Encrypt(key,P2)!= Encrypt(key,P)

b. Decrypt 表示和Encrypt对应的解密函数, 对与任何key, 如果P2!=P, 那么Decrypt(key,P2)!= Decrypt(key,P).

 

注意这个命题里的所有这两个字.

13. asp.net的应用中需要多次使用一个固定的密码进行加密运算. 通常作加密的步骤是, 先产生一个加密服务类实例, 然后调用该实例提供的服务. 产生加密服务类实例是个很费时的操作, 另外, 已知加密类的所有静态函数是thread safe, 而其成员函数是thread unsafe.  如何优化以克服产生加密服务类实例费时的问题?

对这个问题的解法可以进一步推广成为一个pattern, 请说说你怎样设计这个pattern, 说出其中应当主要包括的class  /interface / delegate, 并举例说明对任何一个具体这类问题如何应用你的pattern.

 

 

基于SpringBoot+Vue的学生交流互助平台研究AI更换标第1章引言介绍学生交流互助平台的研究背景、意义、现状、方法与创新点。1.1研究背景与意义分析学生交流互助平台在当前教育环境下的需求及其重要性。1.2国内外研究现状综述国内外在学生交流互助平台方面的研究进展与实践应用。1.3研究方法与创新点概述本研究采用的方法论、技术路线及预期的创新成果。第2章相关理论阐述SpringBoot与Vue框架的理论基础及在学生交流互助平台中的应用。2.1SpringBoot框架概述介绍SpringBoot框架的核心思想、特点及优势。2.2Vue框架概述阐述Vue框架的基本原理、件化开发思想及与前端的交互机制。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue在学生交流互助平台中的整合方式及优势。第3章平台需求分析深入分析学生交流互助平台的功能需求、非功能需求及用户体验要求。3.1功能需求分析详细阐述平台的各项功能需求,如用户管理、信息交流、互助学习等。3.2非功能需求分析对平台的性能、安全性、可扩展性等非功能需求进行分析。3.3用户体验要求从用户角度出发,提出平台在易用性、美观性等方面的要求。第4章平台设计与实现具体描述学生交流互助平台的架构设计、功能实现及前后端交互细节。4.1平台架构设计给出平台的整体架构设计,包括前后端分离、微服务架构等思想的应用。4.2功能模块实现详细阐述各个功能模块的实现过程,如用户登录注册、信息发布与查看、在线交流等。4.3前后端交互细节介绍前后端数据交互的方式、接口设计及数据传输过程中的安全问。第5章平台测试与优化对平台进行全面的测试,发现并解决潜在问,同时进行优化以提高性能。5.1测试环境与方案介绍测试环境的搭建及所采用的测试方案,包括单元测试、集成测试等。5.2测试结果分析对测试结果进行详细分析,找出问的根源并
内容概要:本文详细介绍了一个基于灰狼优化算法(GWO)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)融合注意力机制的多变量多步时间序列预测项目。该项目旨在解决传统时序预测方法难以捕捉非线性、复杂时序依赖关系的问,通过融合CNN的空间特征提取、BiLSTM的时序建模能力及注意力机制的动态权重调节能力,实现对多变量多步时间序列的精准预测。项目不仅涵盖了数据预处理、模型构建与训练、性能评估,还包括了GUI界面的设计与实现。此外,文章还讨论了模型的部署、应用领域及其未来改进方向。 适合人群:具备一定编程基础,特别是对深度学习、时间序列预测及优化算法有一定了解的研发人员和数据科学家。 使用场景及目标:①用于智能电网负荷预测、金融市场多资产价格预测、环境气象多参数预报、智能制造设备状态监测与预测维护、交通流量预测与智慧交通管理、医疗健康多指标预测等领域;②提升多变量多步时间序列预测精度,优化资源调度和风险管控;③实现自动化超参数优化,降低人工调参成本,提高模型训练效率;④增强模型对复杂时序数据特征的学习能力,促进智能决策支持应用。 阅读建议:此资源不仅提供了详细的代码实现和模型架构解析,还深入探讨了模型优化和实际应用中的挑战与解决方案。因此,在学习过程中,建议结合理论与实践,逐步理解各个模块的功能和实现细节,并尝试在自己的项目中应用这些技术和方法。同时,注意数据预处理的重要性,合理设置模型参数与网络结构,控制多步预测误差传播,防范过拟合,规划计算资源与训练时间,关注模型的可解释性和透明度,以及持续更新与迭代模型,以适应数据分布的变化。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值