Leetcode: Balanced Binary Tree

本文介绍了如何通过递归和改进的方法判断一个二叉树是否为高度平衡的二叉树,详细解释了高度平衡二叉树的定义,并提供了一种更优的实现策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Below solution uses two recursion, which is not recommended: find the max depth of left and right node separately, and compare to see their difference. Actually recursion is repeated here, which can be improved.

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean isBalanced(TreeNode root) {
        if (root == null) {
            return true;
        }
        
        int left = maxDepth(root.left);
        int right = maxDepth(root.right);
        if (Math.abs(left - right) > 1) {
            return false;
        } else {
            return isBalanced(root.left) && isBalanced(root.right);
        }
        
    }
    
    private int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        
        return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
    }
}

A preferable method is: when calculating for the max depth, exam whether the difference of depth of left subtree and right subtree is larger than 1 at the same time. Once it is, return -1 as a false answer.

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean isBalanced(TreeNode root) {
        return maxDepth(root) != -1;
    }
    
    private int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        
        int left = maxDepth(root.left);
        int right = maxDepth(root.right);
        if (left == -1 || right == -1 || Math.abs(left - right) > 1) {
            return -1;
        }
        
        return Math.max(left, right) + 1;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值