定义:设xxx是未知整数,形如ax≡b(modm)ax\equiv b\pmod max≡b(modm)的同余式称为一元线性同余方程.
定理:设a,b∈Z,m∈Z+,(a,m)=da,b\in\Z,m\in\Z^+,(a,m)=da,b∈Z,m∈Z+,(a,m)=d,若d∤bd\nmid bd∤b,则ax≡b(modm)ax\equiv b\pmod max≡b(modm)无解;若d∣bd\mid bd∣b,则ax≡b(modm)ax\equiv b\pmod max≡b(modm)恰有ddd个模mmm不同余的解.
证明:方程ax≡b(modm)ax\equiv b\pmod max≡b(modm)等价于二元线性Diophantine方程ax−my=bax-my=bax−my=b.整数xxx是ax≡b(modm)ax\equiv b\pmod max≡b(modm)的解当且仅当∃y,ax−my=b\exists y,ax-my=b∃y,ax−my=b.所以若d∤bd\nmid bd∤b,方程无解;若d∣bd\mid bd∣b,方程ax−my=bax-my=bax−my=b有无穷多解:x=x0+mdty=y0+adtx=x_0+\dfrac{m}{d}t \quad \quad y=y_0+\dfrac{a}{d}tx=x0+dmty=y0+dat其中{x=x0y=y0\begin{cases} x=x_0 \\ y=y_0 \end{cases}{x=x0y=y0是方程的特解.
取其中两个解:x1=x0+mdt1,x2=x0+mdt2x_1=x_0+\dfrac{m}{d}t_1,x_2=x_0+\dfrac{m}{d}t_2x1=x0+dmt1,x2=x0+dmt2,若x1≡x2(modm)x_1\equiv x_2\pmod mx1≡x2(modm),则mdt1≡mdt2(modm)\dfrac{m}{d}t_1\equiv \dfrac{m}{d}t_2\pmod mdmt1≡dmt2(modm)又md∣m\dfrac{m}{d}\mid mdm∣m,所以t1≡t2(modd)t_1\equiv t_2\pmod dt1≡t2(modd).
只需令ttt通过模ddd的完全剩余系,即方程ax≡b(modm)ax\equiv b\pmod max≡b(modm)恰有ddd个模mmm不同余的解.
推论:若a,b∈Z,m∈Z+,(a,m)=1a,b\in\Z,m\in\Z^+,(a,m)=1a,b∈Z,m∈Z+,(a,m)=1则线性同余方程组ax≡b(modm)ax\equiv b\pmod max≡b(modm)有模mmm的唯一解.
定理:设ppp是素数,a∈Z+a\in\Z^+a∈Z+,aaa是自身模ppp的逆当且仅当a≡1(modp)a\equiv 1\pmod pa≡1(modp)或a≡−1(modp)a\equiv -1\pmod pa≡−1(modp).
定理(中国剩余定理):设m1,m2,⋯ ,mn∈Z+m_1,m_2,\cdots,m_n\in\Z^+m1,m2,⋯,mn∈Z+且两两互素,则同余方程组x≡a1(modm1)x≡a2(modm2)⋮x≡ar(modmr)x\equiv a_1\pmod {m_1} \\ x\equiv a_2\pmod {m_2} \\ \vdots \\ x\equiv a_r\pmod {m_r}x≡a1(modm1)x≡a2(modm2)⋮x≡ar(modmr)有模M=m1m2⋯mrM=m_1m_2\cdots m_rM=m1m2⋯mr的唯一解.
定义:设xxx是未知整数,f(x)∈Z[x]f(x)\in\Z[x]f(x)∈Z[x],形如f(x)≡0(modm)f(x)\equiv 0\pmod mf(x)≡0(modm)的同余式称为多项式同余方程.
定义:设f(x)=anxn+an−1xn−1+⋯+a1x+a0f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0f(x)=anxn+an−1xn−1+⋯+a1x+a0,其中ai∈Ri=0,1,2,⋯ ,na_i\in\R \quad i=0,1,2,\cdots,nai∈Ri=0,1,2,⋯,n则f(x)f(x)f(x)的导数f′(x):=nanxn−1+(n−1)an−1xn−2+⋯+a1f'(x)\coloneqq na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+\cdots+a_1f′(x):=nanxn−1+(n−1)an−1xn−2+⋯+a1
定理:多项式导数的性质:若f(x)f(x)f(x)和g(x)g(x)g(x)是多项式,则:
1.(f+g)′(x)=f′(x)+g′(x)(f+g)'(x)=f'(x)+g'(x)(f+g)′(x)=f′(x)+g′(x).
2.(cf)′(x)=c⋅f′(x)(cf)'(x)=c\cdot f'(x)(cf)′(x)=c⋅f′(x).
3.若k∈Z+k\in\Z^+k∈Z+,则(f+g)(k)(x)=f(k)(x)+g(k)(x),(cf)(k)(x)=c⋅f(k)(x)(f+g)^{(k)}(x)=f^{(k)}(x)+g^{(k)}(x),(cf)^{(k)}(x)=c\cdot f^{(k)}(x)(f+g)(k)(x)=f(k)(x)+g(k)(x),(cf)(k)(x)=c⋅f(k)(x).
4.若m,k∈Z+,k≤mm,k\in\Z^+,k\le mm,k∈Z+,k≤m,且f(x)=xmf(x)=x^mf(x)=xm,则f(k)(x)=m(m−1)⋯(m−k+1)xm−kf^{(k)}(x)=m(m-1)\cdots (m-k+1)x^{m-k}f(k)(x)=m(m−1)⋯(m−k+1)xm−k.
定理:若f(x)f(x)f(x)是nnn次多项式,a,b∈Ra,b\in\Ra,b∈R,则f(a+b)=f(a)+f′(a)b+12f′′(a)b2+⋯+1n!f(n)(a)bnf(a+b)=f(a)+f'(a)b+\dfrac{1}{2}f''(a)b^2+\cdots+\dfrac{1}{n!}f^{(n)}(a)b^nf(a+b)=f(a)+f′(a)b+21f′′(a)b2+⋯+n!1f(n)(a)bn
定理(Hensel’s lemma):设f(x)∈Z[x],2≤k∈Z,pf(x)\in\Z[x],2\le k\in\Z,pf(x)∈Z[x],2≤k∈Z,p是素数,若rrr是同余方程f(x)≡0(modpk−1)f(x)\equiv 0\pmod{p^{k-1}}f(x)≡0(modpk−1)的解,则:
1.若f′(r)̸≡0(modp)f'(r)\not\equiv 0\pmod pf′(r)̸≡0(modp),则∃!t∈Z0≤t≤p\exists!t\in\Z \quad 0\le t \le p∃!t∈Z0≤t≤p,使得f(r+tpk−1)≡0(modpk)f(r+tp^{k-1})\equiv 0\pmod{p^k}f(r+tpk−1)≡0(modpk),其中t≡−f′(r)‾f(r)pk−1(modp)\displaystyle t\equiv -\overline{f'(r)}\dfrac{f(r)}{p^{k-1}}\pmod pt≡−f′(r)pk−1f(r)(modp) f′(r)‾\overline{f'(r)}f′(r)是f′(r)f'(r)f′(r)模ppp的逆.
2.若f′(r)≡0(modp),f(r)≡0(modpk)f'(r)\equiv 0\pmod p,f(r)\equiv 0\pmod{p^k}f′(r)≡0(modp),f(r)≡0(modpk),则对∀t∈Z\forall t\in\Z∀t∈Z,有f(r+tpk−1)≡0(modpk)f(r+tp^{k-1})\equiv 0\pmod{p^k}f(r+tpk−1)≡0(modpk).
3.若f′(r)≡0(modp),f(r)̸≡0(modpk)f'(r)\equiv 0\pmod p,f(r)\not\equiv 0\pmod{p^k}f′(r)≡0(modp),f(r)̸≡0(modpk),则f(x)≡0(modpk)f(x)\equiv 0\pmod{p^k}f(x)≡0(modpk)不存在满足x≡r(modpk−1)x\equiv r\pmod{p^{k-1}}x≡r(modpk−1)的解.
推论:设rrr是多项式同余方程f(x)≡0(modp)f(x)\equiv 0\pmod pf(x)≡0(modp)的一个解,其中ppp是素数.若f′(r)̸≡0(modp)f'(r)\not\equiv 0\pmod pf′(r)̸≡0(modp),则存在模pkp^kpk的唯一解rk,k=2,3,⋯r_k,k=2,3,\cdotsrk,k=2,3,⋯,使得r1=rr_1=rr1=r且rk=rk−1−f(rk−1)f′(r)‾r_k=r_{k-1}-f(r_{k-1})\overline{f'(r)}rk=rk−1−f(rk−1)f′(r).
定义:设A,B∈Mn×k(Z)A,B\in M_{n\times k}(\Z)A,B∈Mn×k(Z),第(i,j)(i,j)(i,j)个元素为aija_{ij}aij和bijb_{ij}bij.若aij≡bij(modm)∀1≤i≤n,1≤j≤ka_{ij}\equiv b_{ij}\pmod m \quad \forall1\le i \le n,1\le j \le kaij≡bij(modm)∀1≤i≤n,1≤j≤k,则称AAA和BBB模mmm同余,记为A≡B(modm)A\equiv B\pmod mA≡B(modm).
定理:设A,B∈Mn×k(Z),C∈Mk×p(Z),D∈Mp×n(Z)A,B\in M_{n\times k}(\Z),C\in M_{k\times p}(\Z),D\in M_{p\times n}(\Z)A,B∈Mn×k(Z),C∈Mk×p(Z),D∈Mp×n(Z),若A≡B(modm)A\equiv B\pmod mA≡B(modm),则AC≡BC(modm),DA≡DB(modm)AC\equiv BC\pmod m,DA\equiv DB\pmod mAC≡BC(modm),DA≡DB(modm).
现在考虑线性同余方程组{a11x1+a12x2+⋯+a1nxn≡b1(modm)a21x1+a22x2+⋯+a2nxn≡b2(modm)⋮an1x1+an2x2+⋯+annxn≡bn(modm)\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\equiv b_1\pmod m \\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\equiv b_2\pmod m \\ \vdots \\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n\equiv b_n\pmod m \end{cases}⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧a11x1+a12x2+⋯+a1nxn≡b1(modm)a21x1+a22x2+⋯+a2nxn≡b2(modm)⋮an1x1+an2x2+⋯+annxn≡bn(modm)利用矩阵记法,等价于矩阵同余方程AX≡B(modm)AX\equiv B\pmod mAX≡B(modm),其中A=[a11a12⋯a1na21a22⋯a2n⋮⋮⋮am1am2⋯amn]X=[x1x2⋮xn]B=[b1b2⋮bn]A=\begin{bmatrix} { a }_{ 11 } & { a }_{ 12 } & \cdots & { a }_{ 1n } \\ { a }_{ 21 } & { a }_{ 22 } & \cdots & { a }_{ 2n } \\ \vdots & \vdots & & \vdots \\ { a }_{ m1 } & { a }_{ m2 } & \cdots & { a }_{ mn } \end{bmatrix} \quad X=\begin{bmatrix} { x }_{ 1 } \\ { x }_{ 2 } \\ \vdots \\ { x }_{ n } \end{bmatrix} \quad B=\begin{bmatrix} { b }_{ 1 } \\ { b }_{ 2 } \\ \vdots \\ { b }_{ n } \end{bmatrix}A=⎣⎢⎢⎢⎡a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amn⎦⎥⎥⎥⎤X=⎣⎢⎢⎢⎡x1x2⋮xn⎦⎥⎥⎥⎤B=⎣⎢⎢⎢⎡b1b2⋮bn⎦⎥⎥⎥⎤
定义:若A,A‾∈Mn(Z)A,\overline{A}\in M_n(\Z)A,A∈Mn(Z),且AA‾≡A‾A≡I(modm)A\overline{A}\equiv \overline{A}A\equiv I\pmod mAA≡AA≡I(modm),其中I=[101⋱01]n×nI={ \left[ \begin{matrix} 1 & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{matrix} \right] }_{ n\times n }I=⎣⎢⎢⎡101⋱01⎦⎥⎥⎤n×n是nnn阶单位矩阵,则称A‾\overline{A}A为AAA模mmm的一个逆.
定义:设A∈Mn(Z),m∈Z+A\in M_n(\Z),m\in\Z^+A∈Mn(Z),m∈Z+,若AB=detA⋅IAB=detA\cdot IAB=detA⋅I,则称BBB为AAA的伴随,记为adj(A)adj(A)adj(A),或简记为adjAadjAadjA.
设A∈Mn(Z)A\in M_n(\Z)A∈Mn(Z),AAA的伴随是一个n×nn\times nn×n阶矩阵,它的第(i,j)(i,j)(i,j)个元素是CijC_{ij}Cij.其中CijC_{ij}Cij是(−1)i+j(-1)^{i+j}(−1)i+j乘AAA删去第iii行jjj列矩阵的行列式.
定理:设A∈Mn(Z),m∈Z+A\in M_n(\Z),m\in\Z^+A∈Mn(Z),m∈Z+,若(detA,m)=1(detA,m)=1(detA,m)=1,则A‾=(detA)−1⋅adjA\overline{A}=(detA)^{-1}\cdot adjAA=(detA)−1⋅adjA是AAA模mmm的一个逆.
定理:若A,B∈Mn(Z),A≡B(modm)A,B\in M_n(\Z),A\equiv B\pmod mA,B∈Mn(Z),A≡B(modm),则对∀k∈Z+\forall k\in\Z^+∀k∈Z+,有Ak≡Bk(modm)A^k\equiv B^k\pmod mAk≡Bk(modm).
定义:若A≠I,A2≡I(modm)A\neq I,A^2\equiv I\pmod mA̸=I,A2≡I(modm),则称AAA为模mmm对合的.