Opencv Kmeans聚类算法

本文介绍了OpenCV中K-means聚类算法的基本步骤,并提供了cvKMeans2函数的使用说明,该函数用于对输入样本进行聚类。通过设定聚类数量、迭代条件等参数,可以实现样本的自动分类。同时提到了cvReshape函数,用于调整数组的形状,以适应不同的操作需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小

1. 算法基本步骤

(1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心;

(2) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;

(3) 重新计算每个(有变化)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值