Calculate R := B P mod M for large values of B, P, and M using an efficient algorithm. (That’s right, this problem has a time dependency !!!.) Input The input will contain several test cases, each of them as described below. Consecutive test cases are separated by a single blank line. Three integer values (in the order B, P, M) will be read one number per line. B and P are integers in the range 0 to 2147483647 inclusive. M is an integer in the range 1 to 46340 inclusive. Output For each test, the result of the computation. A single integer on a line by itself. Sample Input 3 18132 17 17 1765 3 2374859 3029382 36123 Sample Output 13 2 13195
#include <stdio.h>
typedef unsigned long long ULL;
ULL Mod(ULL a, ULL n, ULL m)
{
ULL res = 1;
while(n) {
if((n & 1)==0)//(n&1)必须加括号
;
else
{
// printf("%d\n", n&1);
res *= a;
res %= m;
}
a *= a;
a %= m;
n >>= 1;
}
return res;
}
int main(void)
{
ULL b, p, m;
while(~scanf("%lld%lld%lld", &b, &p, &m)) {
printf("%lld\n", Mod(b, p, m));
}
return 0;
}
本文介绍了一种高效的大数模幂运算算法,用于解决在大整数B、P和M下进行模幂运算的问题。该算法通过位操作和循环迭代实现,避免了直接计算可能导致的溢出和效率低下问题,适用于密码学、安全协议等领域。

被折叠的 条评论
为什么被折叠?



