Codeforces 474D Flowers

C++动态规划求组合数
本文通过一个具体的示例,介绍了如何使用C++结合动态规划解决特定的组合计数问题。具体实现中运用了标准模板库(STL)中的多种容器,并通过优化计算流程来提高效率。

#include <iostream>//数据输入输出流
#include <string.h>//字符串操作函数
#include <stdio.h>//C的输入输出
#include <stdlib.h>//定义杂项函数及内存分配函数
#include <math.h>//C中的数学函数
#include <cstring>//c++中的string类 他不能用strcpy等c函数去操作
#include <vector>//STL vetor容器
#include <list>//STL list
#include <map>// STL map
#include <queue>// STL queue
#include <stack>//sTL stack
#include <bitset>//bitset可按位定义串
//比如:bitset <1000> all;定义一个1000位的串
#include <algorithm>//STL各种算法 比如 swap sort merge max min 比较
#include <numeric>//常用数字操作 一般和algorithm搭配使用
#include <functional>//STL定义运算函数(代替运算符)
//#include <iomanip.h>//参数化输入/输出
#include <limits.h>//定义各种数据类型最值常量
//#include <strstrea.h>//基于数组的输入/输出
//#include <fstream.h>//文件输入/输出
#define ll long long

using namespace std;

int maxn = 100005;
int t, k, a, b;
int MOD = 1e9 + 7;

int main()
{
    int dp[maxn];
    int sum[maxn];
    cin >> t >> k;
    for ( int i = 0; i < k; i++ )
    {
        dp[i] = 1;
    }
    for ( int i = k; i < maxn; i++ )
    {
        dp[i] = ( dp[i - 1] + dp[i - k] ) % MOD;
    }
    sum[0] = 0;
    for ( int i = 1; i < maxn; i++ )
    {
        sum[i] = ( sum[i - 1] + dp[i] ) % MOD;
    }
    while ( t-- )
    {
        cin >> a >> b;
        cout << ( sum[b] - sum[a - 1] + MOD ) % MOD << endl;
    }
    return 0;
}

递归

题目意思是这个东西吃白花是一组一组的吃,每组的长度限定,吃红花是一朵一朵的吃,求对于花的数量在a到b之间有多少种不同的吃法(没有先后顺序)

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值