ST算法Code:
//#include<bits/stdc++.h>
#include<cstdio>
#include<math.h>
#include<iostream>
#include<queue>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long LL;
const int N=5e4+10;
int n,q;
int a[N];
int f1[N][30];
int f2[N][30];
void ST()
{
for(int i=1;i<=n;i++)
f1[i][0]=f2[i][0]=a[i];
int nlog=(int)(log(double(n))/log(2.0));
for(int j=1;j<=nlog;j++)
{
for(int i=1;i<=n;i++)
{
if(i+(1<<j)-1<=n)
{
f1[i][j]=min(f1[i][j-1],f1[i+(1<<(j-1))][j-1]);
f2[i][j]=max(f2[i][j-1],f2[i+(1<<(j-1))][j-1]);
}
}
}
}
int RMQ(int l,int r)
{
int nlog=(int)(log(double(r-l+1))/log(2.0));
int mi=min(f1[l][nlog],f1[r-(1<<nlog)+1][nlog]);
int ma=max(f2[l][nlog],f2[r-(1<<nlog)+1][nlog]);
return ma-mi;
}
int main()
{
int l,r;
while(scanf("%d%d",&n,&q)!=EOF)
{
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
ST();
while(q--)
{
scanf("%d%d",&l,&r);
printf("%d\n",RMQ(l,r));
}
}
return 0;
}
线段树Code:
#include<cstdio>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
const int N=50007;
struct st{
int left,right;
int mina;
int maxa;
};
st q[N*4];
int n,m;
void build(int num,int L,int R)
{
q[num].left=L;
q[num].right=R;
if(L==R)
{
scanf("%d",&q[num].maxa);
q[num].mina=q[num].maxa;
return;
}
build(2*num,L,(L+R)/2);
build(2*num+1,(L+R)/2+1,R);
q[num].mina=min(q[2*num].mina,q[2*num+1].mina);
q[num].maxa=max(q[2*num].maxa,q[2*num+1].maxa);
}
int ans1;
int ans2;
int get_max(int num,int s,int t)
{
if(q[num].left>=s&&q[num].right<=t)
return q[num].maxa;
int mid=(q[num].left+q[num].right)/2;
if(mid>=t)
return get_max(2*num,s,t);
else if(mid<s)
return get_max(2*num+1,s,t);
else{
return max(get_max(2*num,s,mid),get_max(2*num+1,mid+1,t));
}
}
int get_min(int num,int s,int t)
{
if(q[num].left>=s&&q[num].right<=t)
return q[num].mina;
int mid=(q[num].left+q[num].right)/2;
if(mid>=t)
return get_min(2*num,s,t);
else if(mid<s)
return get_min(2*num+1,s,t);
else{
return min(get_min(2*num,s,mid),get_min(2*num+1,mid+1,t));
}
}
int main()
{
scanf("%d%d",&n,&m);
build(1,1,n);
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",get_max(1,a,b)-get_min(1,a,b));
}
return 0;
}