51 nod 最高的奖励

有N个任务,每个任务有一个最晚结束时间以及一个对应的奖励。在结束时间之前完成该任务,就可以获得对应的奖励。完成每一个任务所需的时间都是1个单位时间。有时候完成所有任务是不可能的,因为时间上可能会有冲突,这需要你来取舍。求能够获得的最高奖励。
Input
第1行:一个数N,表示任务的数量(2 <= N <= 50000)
第2 - N + 1行,每行2个数,中间用空格分隔,表示任务的最晚结束时间E[i]以及对应的奖励W[i]。(1 <= E[i] <= 10^9,1 <= W[i] <= 10^9)
Output
输出能够获得的最高奖励。
Input示例
7
4 20
2 60
4 70
3 40
1 30
4 50
6 10
Output示例
230

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1163

分析一下这个题哈,首先每一个单位时间只能做一件事情,对于样例来说,我们其实就是考虑结束时间为4的三种情况我们怎么取而已吧。

你会发现,我们考虑4的情况,我们只会去和结束时间为1,2,3,的来讨论,对于结束时间是6的,我们是不会管的,所以6我们是一定会取的。因为在那个时间

没有事情会和它冲突。


所有我们就应该倒着来讨论。

因为这个最大的时间是10^9次方,太大了,我们可以把这个时间缩小,缩小到n就可以了,大于n的就让他直接等于n,这样考虑是不会影响最终的结果的。

因为最多就是n件事情,每个一个单位时间。



然后我们就倒着找,当时间为n的时候,把所有时间为n的找出来,取一个最大值加起来,怎么快速取到最大?

优先队列。就可以咯。

#include<bits/stdc++.h>
using namespace std;
struct node
{
    int e;
    long long c;
        bool operator<(const node &C)const{
            return C.c>c;
        }
} a[50005];
bool cmp(node aa,node bb)
{
    if(aa.e==bb.e)
        return aa.c>bb.c;
    return aa.e>bb.e;
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        priority_queue<node>q;
        for(int i=1; i<=n; i++)
        {
            int x;
            scanf("%d%lld",&x,&a[i].c);
            a[i].e=min(x,n);
        }
        sort(a+1,a+n+1,cmp);
//        for(int i=1;i<=n;i++)
//            printf("%d %d\n",a[i].e,a[i].c);
        int j=1;
        long long ans=0;
        for(int i=n;i>=1;i--)
        {
            while(a[j].e>=i&&j<=n)
            {
                //printf("j=%d\n",j);
                q.push(a[j]);
                j++;
            }
            if(!q.empty())
            {
                node temp=q.top();
                ans+=temp.c;
                cout<<temp.c<<endl;
                q.pop();
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}






题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值