当遇到不匹配时,查表可知,最后一个匹配字符对应的"部分匹配值",因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
“部分匹配值”就是”前缀”和”后缀”的最长的共有元素的长度。以”ABCDABD”为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
void makeNext(const char P[],int next[])
{
int q,k;//q:模版字符串下标;k:最大前后缀长度
int m = strlen(P);//模版字符串长度
next[0] = 0;//模版字符串的第一个字符的最大前后缀长度为0
for (q = 1,k = 0; q < m; ++q)//for循环,从第二个字符开始,依次计算每一个字符对应的next值
{
while(k > 0 && P[q] != P[k])//递归的求出P[0]···P[q]的最大的相同的前后缀长度k
k = next[k-1]; //不理解没关系看下面的分析,这个while循环是整段代码的精髓所在,确实不好理解
if (P[q] == P[k])//如果相等,那么最大相同前后缀长度加1
{
k++;
}
next[q] = k;
}
}
现在我着重讲解一下while循环所做的工作:
1.已知前一步计算时最大相同的前后缀长度为k(k>0),即P[0]···P[k-1];
2.此时比较第k项P[k]与P[q],如图1所示
3.如果P[K]等于P[q],那么很简单跳出while循环;
4.关键!关键有木有!关键如果不等呢???那么我们应该利用已经得到的next[0]···next[k-1]来求P[0]···P[k-1]这个子串中最大相同前后缀,可能有同学要问了——为什么要求P[0]···P[k-1]的最大相同前后缀呢???是啊!为什么呢? 原因在于P[k]已经和P[q]失配了,而且P[q-k] ··· P[q-1]又与P[0] ···P[k-1]相同,看来P[0]···P[k-1]这么长的子串是用不了了,那么我要找个同样也是P[0]打头、P[k-1]结尾的子串即P[0]···P[j-1](j==next[k-1]),看看它的下一项P[j]是否能和P[q]匹配。如图2所示
另一篇博文对于这个问题的解释:
下面的问题是:已知next [0, ..., j],如何求出next [j + 1]呢?
对于P的前j+1个序列字符:
若p[k] == p[j],则next[j + 1 ] = next [j] + 1 = k + 1;
若p[k ] ≠ p[j],如果此时p[ next[k] ] == p[j ],则next[ j + 1 ] = next[k] + 1,否则继续递归前缀索引k = next[k],而后重复此过程。 相当于在字符p[j+1]之前不存在长度为k+1的前缀"p0 p1, …, pk-1 pk"跟后缀“pj-k pj-k+1, …, pj-1 pj"相等,那么是否可能存在另一个值t+1 < k+1,使得长度更小的前缀 “p0 p1, …, pt-1 pt” 等于长度更小的后缀 “pj-t pj-t+1, …, pj-1 pj” 呢?如果存在,那么这个t+1 便是next[ j+1]的值,此相当于利用已经求得的next 数组(next [0, ..., k, ..., j])进行P串前缀跟P串后缀的匹配。
一般的文章或教材可能就此一笔带过,但大部分的初学者可能还是不能很好的理解上述求解next 数组的原理,故接下来,我再来着重说明下。
如下图所示,假定给定模式串ABCDABCE,且已知next [j] = k(相当于“p0 pk-1” = “pj-k pj-1” = AB,可以看出k为2),现要求next [j + 1]等于多少?因为pk = pj = C,所以next[j + 1] = next[j] + 1 = k + 1(可以看出next[j + 1] = 3)。代表字符E前的模式串中,有长度k+1 的相同前缀后缀。
但如果pk != pj 呢?说明“p0 pk-1 pk” ≠ “pj-k pj-1 pj”。换言之,当pk != pj后,字符E前有多大长度的相同前缀后缀呢?很明显,因为C不同于D,所以ABC 跟 ABD不相同,即字符E前的模式串没有长度为k+1的相同前缀后缀,也就不能再简单的令:next[j + 1] = next[j] + 1 。所以,咱们只能去寻找长度更短一点的相同前缀后缀。
结合上图来讲,若能在前缀“ p0 pk-1 pk ” 中不断的递归前缀索引k = next [k],找到一个字符pk’ 也为D,代表pk’ = pj,且满足p0 pk'-1 pk' = pj-k' pj-1 pj,则最大相同的前缀后缀长度为k' + 1,从而next [j + 1] = k’ + 1 = next [k' ] + 1。否则前缀中没有D,则代表没有相同的前缀后缀,next [j + 1] = 0。
那为何递归前缀索引k = next[k],就能找到长度更短的相同前缀后缀呢?这又归根到next数组的含义。我们拿前缀 p0 pk-1 pk 去跟后缀pj-k pj-1 pj匹配,如果pk 跟pj 失配,下一步就是用p[next[k]] 去跟pj 继续匹配,如果p[ next[k] ]跟pj还是不匹配,则需要寻找长度更短的相同前缀后缀,即下一步用p[ next[ next[k] ] ]去跟pj匹配。此过程相当于模式串的自我匹配,所以不断的递归k = next[k],直到要么找到长度更短的相同前缀后缀,要么没有长度更短的相同前缀后缀。如下图所示:
另附:
难点来了。
agctagcagctagct:pattern[14]=t,pattern[7]=a,不相等。
怎么办?于是next[14]=0吗?
很显然不行,因为agct是前缀和后缀的最长共同序列,next[14]=4。
寻找agct基于以下考虑,
如图,橙色的A表示已经确定的最长公共序列,绿色的T将要与开头的A后面的元素进行比较。
如果比对失败,我们需要寻找次长公共序列B,然后T再与开头的B后面元素进行比对。
我们看到,三幅图中,橙色块都是相等的,
如果存在次长公共序列,第二幅图表明,橙色块必然同时以B开头且以B结尾。
即,如第三幅图所示,
这表明,T位置的次长公共序列长度,就是橙色块的最长公共序列长度。
因此,计算agctagcagctagc的次长公共序列,就要计算B=agctagc的最长公共序列,
而这个已经计算过了,next[6]=3,得到agc。
然后与agc后面的元素t进行比对,相等,next[14]=4。