hdu1561树形dp 01背包

本文介绍了一种解决战略游戏中如何选择攻克城堡以最大化获得宝物数量的问题。通过使用图论和动态规划的方法,实现了一个算法帮助玩家选择最佳攻克方案。

The more, The Better

Time Limit : 6000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 1   Accepted Submission(s) : 1
Problem Description
ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物。但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其他某一个特定的城堡。你能帮ACboy算出要获得尽量多的宝物应该攻克哪M个城堡吗?
 

Input
每个测试实例首先包括2个整数,N,M.(1 <= M <= N <= 200);在接下来的N行里,每行包括2个整数,a,b. 在第 i 行,a 代表要攻克第 i 个城堡必须先攻克第 a 个城堡,如果 a = 0 则代表可以直接攻克第 i 个城堡。b 代表第 i 个城堡的宝物数量, b >= 0。当N = 0, M = 0输入结束。
 

Output
对于每个测试实例,输出一个整数,代表ACboy攻克M个城堡所获得的最多宝物的数量。
 

Sample Input
3 2 0 1 0 2 0 3 7 4 2 2 0 1 0 4 2 1 7 1 7 6 2 2 0 0
 

Sample Output
5 13
 

Author
8600
 

Source
HDU 2006-12 Programming Contest
 
#include <iostream>
#include <cstring>
#include <cstdio>
#define INF 0x3f3f3f3f
#define BUG printf("here!\n")
using namespace std;
int val[300];
struct node
{
    int u,v;
};
node edge[3000];
int first[300],next[3000];
int dp[300][300],cc;
int n,m;
inline void add_edge(int u,int v)
{
    edge[cc].u=u;
    edge[cc].v=v;
    next[cc]=first[u];
    first[u]=cc;
    cc++;
}
void dfs(int u)
{
    int i;
    for(i=1;i<=m;i++)
        dp[u][i]=val[u];
    for(i=first[u];i!=-1;i=next[i])
    {
        int v=edge[i].v;
        dfs(v);
        int j,k;
        for(j=m;j>=1;j--)
        {
            for(k=1;k<=m;k++)
            {
                if(j-k>=1)
                    dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[v][k]);
            }
        }
    }
}

int main()
{

    while(scanf("%d%d",&n,&m)!=EOF)
    {
        if(n==0&&m==0)
            break;
        int i;
        memset(first,-1,sizeof(first));
        memset(next,-1,sizeof(next));
        cc=0;
        memset(val,0,sizeof(val));
        for(i=1;i<=n;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            add_edge(a,i);
            val[i]=b;
        }
        memset(dp,0,sizeof(dp));
        m=m+1;
        dfs(0);
        printf("%d\n",dp[0][m]);
    }
    return 0;
}


### SAP中受托批指令流程订单受托外包装流程订单的区别 在SAP系统中,受托批指令流程订单(Subcontracting Batch Instruction Process Order)和受托外包装流程订单(Subcontracting Packaging Process Order)虽然都涉及外部协作方的参,但在实际业务场景中的应用目的、处理逻辑以及数据流存在显著差异。 #### 1. **定义应用场景** - **受托批指令流程订单** 主要用于生产制造过程中某一特定工序由外部供应商完成的情况。在这种模式下,企业将半成品发送至外部供应商处进行加工,供应商仅负责指定工序的操作[^3]。完成后,加工后的物品返回企业内部继续后续工艺直至最终成品入库。此类型的订单强调的是对外部供应商执行的具体加工作业及其费用核算。 - **受托外包装流程订单** 则专注于产品的包装环节外包给第三方服务商的情形。它通常发生在商品已经完成主要生产和组装之后,但需要额外的专业化包装服务才能满足市场或客户需求时采用的方式之一[^1]。这里更侧重于如何利用外部资源提升物流效率和服务质量而非单纯的技术性加工活动本身。 #### 2. **物料流动方向** - 对于**受托批指令流程订单**, 物料通常是未完全制成的产品部件或者中间状态下的材料被送往合作厂商那里接受进一步改造后再送回来加入到整体生产线当中去形成最终产物的一部分. - 而在**受托外包装流程订单**的情况下, 成品可能已经被制造完毕并准备就绪待运往客户手中之前才交给专门从事此类工作的单位来进行最后一步即适当形式(如按箱装载)以便运输储存更加便捷安全高效地到达目的地. #### 3. **财务管理重点** - 在涉及到成本计算方面,**受托批指令流程订单**更多关注的是基于所消耗时间长度或者其他衡量指标来确定应付予承包者的报酬金额大小等问题;同时还要考虑到原先转移出去那些处于初级形态阶段的商品价值变化情况等因素影响整个供应链的成本构分析过程之中. - 相较之下,**受托外包装流程订单**则把焦点放在因实施这些特殊安排所产生的附加支出上面——比如租赁使用某些专用设备设施之类的开销项目上,并且由于这属于末端处理性质的工作所以一般不会直接影响到核心产品本身的定价策略制定等方面考虑范围之内. #### 4. **系统配置功能支持** - 配合上述两种不同类型的任务需求,SAP软件平台提供了相应定制化的解决方案选项可供选择运用其中: - 当面对类似于前者那样的复杂技术要求较高的作业环境时候就需要启用更为精细复杂的参数设定机制以确保能够准确追踪记录每一个细节步骤进展状况直到顺利完成为止. ```abap CALL TRANSACTION 'CO01' USING itab MODE 'E' EXPORTING SELECTION-TABLE = sel_tab VARIANTS = var_tab[] ``` 上述代码片段展示了调用事务码`CO01`(创建生产订单)的一个例子,在设置条件筛选表(`sel_tab`)及变量列表(`var_tab[]`)的基础上自动化生成目标文档实例. - 至于后者相对简单明了一些的情境条件下,则可以通过简化版界面快速输入必要信息要素从而加快工作效率减少人为错误发生几率的同时保持足够的灵活性适应各种可能出现的变化情形. ```sql SELECT * FROM vbak INTO TABLE @DATA(lt_vbak) WHERE vbeln IN (@lv_belnr_low TO @lv_belnr_high). ``` 此SQL查询语句是从销售凭证头表(VBAK)提取符合条件的数据集存入局部内表@DATA(lt_vbak),适用于批量检索关联记录场合。 --- ### 论 综上所述可以看出尽管两者同属ERP领域内的子模块范畴却各自承担着截然不同的使命角色发挥独特作用贡献自身力量共同构建起现代化企业管理信息化体系大厦基石部分不可或缺的重要组成单元组成部分构成因素等等诸多层面意义非凡值得深入研究
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值