感觉这题挺好,难度也不算大,第三次做了,接触C++20天了,看到20天前的代码,有种说不出的岁月感,继续努力,要和武汉一起加油!!!
题目:
已知二维坐标系下n个点的坐标,是否存在一条无斜率的直线使所有点关于该直线左右对称,存在“YES” 不存在“NO”
《 原题目链接 》
理解:
1.仅一个点一定是YES
2.所有点横坐标均相同则一定是YES
3.对称轴的表达式 X = 0.5*k (k∈Z) ↓
4.为避免浮点误差,处理的时候只需要用到对称轴的两倍(代码中 olo 变量)
第一次写的代码冗长,比较暴力= =,就不拿出来了
第二次写用到vector map set,在相同纵坐标下处理横坐标即可,技巧性不强,纯粹STL,以下是第二次所写代码(代码风格发生过变化)
#include <iostream>
#include <vector>
#include <set>
#include <map>
using namespace std;
typedef vector<int> Vi;
const int Big = 12345;
map<int,Vi> p;//y <-> vector<int> x
set<int> y_data;//all possible y_value.
int olo;//对称轴两倍
bool check (int y)
{
Vi t = p[y];//t[i]即每个 'x'
for(int i=0;i<t.size();i++)
{
if(t[i]==Big) continue;//抵消赋Big
int flag=0;
for(int j=0;j<t.size();j++)
if(olo == t[j]+t[i])
{
t[j] = Big;
t[i] = Big;
flag=1;
break;
}
if(!flag) return false;
}
return true;
}
int main()
{
int T;cin >> T;
while(T--)
{
p.clear();y_data.clear();
int maxx = -Big,minx = Big;
int n;cin >> n;
for(int i=0;i<n;i++)
{
int x,y;cin >> x >> y;
if(maxx<x) maxx = x;
if(minx>x) minx = x;
y_data.insert(y);
if(p.count(y)==0)
p[y] = Vi();
p[y].push_back(x);
}
olo = minx+maxx;
int flag=1;
for(set<int>::iterator it=y_data.begin();it!=y_data.end();it++)
if(!check(*it)) { flag = 0; break; }
if(flag) cout << "YES" << endl;
else cout << "NO" << endl;
}
return 0;
}
今天又温故一遍,发现仅排序就可以处理这些点《 可把我高兴坏了(‾◡‾):
结构体排序,排序规则有两个:x优先 x相同比较y y小优先和y大优先 (代码中cmp1 cmp2)
操作:整体 cmp1 排一遍 ,后半段cmp2 排一遍 这样比较 p[i] 与 p[n - i - 1] 即可
具体实现
#include <iostream>
using namespace std;
struct P {
int x, y;
//P(int x = 0, int y = 0) : x(x), y(y) {}
}p[1000];
int cmp1(const P& k1, const P& k2) {
if (k1.x != k2.x) return k1.x < k2.x;
return k1.y < k2.y;
}
int cmp2(const P& k1, const P& k2) {
if (k1.x != k2.x) return k1.x < k2.x;
return k1.y > k2.y;
}
int main() {
int T; cin >> T;
while (T--) {
int n; cin >> n;
for (int i = 0; i < n; i++)
cin >> p[i].x >> p[i].y;
sort(p, p + n , cmp1);//整体 cmp1
sort(p, p + n/2, cmp2);//后半 cmp2
int olo = p[0].x + p[n - 1].x;//对称轴两倍 = X_max + X_min
bool flag = true;
for (int i = 0; i < (n + 1) / 2; i++) {
int j = n - i - 1;
if (p[i].x + p[j].x != olo) flag = false;
if (p[i].x == p[j].x) continue;//在轴上 直接continue(若不在轴上 则已经false不用担心)
if (p[i].y != p[j].y) flag = false;
}
cout << (flag ? "YES" : "NO") << endl;
}
//system("pause");
return 0;
}
> 10ms 其实不是太理想 还需努力 \(≧▽≦)/
博主分享了三次解决同一算法问题的心得,从初学C++时的冗长代码,到运用STL进行优化,最后发现只需通过排序便可高效解决问题。文章详细介绍了使用结构体排序、双指针技巧来判断二维坐标点是否关于某直线对称的方法。
1473

被折叠的 条评论
为什么被折叠?



