YoloV8之数据集转为yolo格式
1.分类数据集制作
1.1 首先创建存放分类数据的文件夹-my_dataset

1.2 然后在其文件夹分别创建train、val两个子文件夹

1.3 train和val文件夹下存放各个类别的缺陷图像

2.检测数据集制作
path: D:\BaiduPan\labelmeCatAndDog
train: images/train
val: images/val
names:
0: dog
1: cat
import os
import numpy as np
import json
from glob import glob
import cv2
import shutil
import yaml
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from PIL import Image
'''
统一图像格式
'''
def change_image_format(label_path, suffix='.jpg'):
"""
统一当前文件夹下所有图像的格式,如'.jpg'
:param suffix: 图像文件后缀
:param label_path:当前文件路径
:return:
"""
externs = ['png', 'jpg', 'JPEG', 'BMP', 'bmp']
files = list()
for extern in externs:
files.extend(glob(label_path + "\\*." + extern))
for index,file in enumerate(tqdm(files)):
name = ''.join(file.split('.')[:-1])
file_suffix = file.split('.')[-1]
if file_suffix != suffix.split('.')[-1]:
new_name = name + suffix
image = Image.open(file)
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
cv2.imwrite(new_name, image)
os.remove(file)
'''
读取所有json文件,获取所有的类别
'''
def get_all_class(file_list, label_path):
"""
从json文件中获取当前数据的所有类别
:param file_list:当前路径下的所有文件名
:param label_path:当前文件路径
:return:
"""
classes = list()
for filename in tqdm(file_list):
json_path = os.path.join(label_path, filename + '.json')
json_file = json.load(open(json_path, "r", encoding="utf-8"))
for item in json_file["shapes"]:
label_class = item['label']
if label_class not in classes:
classes.append(label_class)
print('read file done')
return classes
'''
划分训练集、验证机、测试集
'''
def split_dataset(label_path, test_size=0.3, isUseTest=False, useNumpyShuffle=False):
"""
将文件分为训练集,测试集和验证集
:param useNumpyShuffle: 使用numpy方法分割数据集
:param test_size: 分割测试集或验证集的比例
:param isUseTest: 是否使用测试集,默认为False
:param label_path:当前文件路径
:return:
"""
files = glob(label_path + "\\*.json")
files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]
if useNumpyShuffle:
file_length = len(files)
index = np.arange(file_length)
np.random.seed(32)
np.random.shuffle(index)
test_files = None
if isUseTest:
trainval_files, test_files = np.array(files)[index[:int(file_length * (1 - test_size))]], np.array(files)[
index[int(file_length * (1 - test_size)):]]
else:
trainval_files = files
train_files, val_files = np.array(trainval_files)[index[:int(len(trainval_files) * (1 - test_size))]], \
np.array(trainval_files)[index[int(len(trainval_files) * (1 - test_size)):]]
else:
test_files = None
if isUseTest:
trainval_files, test_files = train_test_split(files, test_size=test_size, random_state=55)
else:
trainval_files = files
train_files, val_files = train_test_split(trainval_files, test_size=test_size, random_state=55)
return train_files, val_files, test_files, files
'''
生成yolov5的训练、验证、测试集的文件夹
'''
def create_save_file(ROOT_DIR):
print('step6:生成yolov5的训练、验证、测试集的文件夹')
train_image = os.path.join(ROOT_DIR, 'images','train')
if not os.path.exists(train_image):
os.makedirs(train_image)
train_label = os.path.join(ROOT_DIR, 'labels','train')
if not os.path.exists(train_label):
os.makedirs(train_label)
val_image = os.path.join(ROOT_DIR, 'images', 'val')
if not os.path.exists(val_image):
os.makedirs(val_image)
val_label = os.path.join(ROOT_DIR, 'labels', 'val')
if not os.path.exists(val_label):
os.makedirs(val_label)
test_image = os.path.join(ROOT_DIR, 'images', 'test')
if not os.path.exists(test_image):
os.makedirs(test_image)
test_label = os.path.join(ROOT_DIR, 'labels', 'test')
if not os.path.exists(test_label):
os.makedirs(test_label)
return train_image, train_label, val_image, val_label, test_image, test_label
'''
转换,根据图像大小,返回box框的中点和高宽信息
'''
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[