Educational Codeforces Round 7 CF622C Not Equal on a Segment

本文介绍了一种高效算法,用于解决给定数组及多个查询的问题,每个查询需找出指定区间内与给定值不等的元素下标。通过预处理数组存储相等与不等值下标,实现快速查询。

Not Equal on a Segment
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
You are given array a with n integers and m queries. The i-th query is given with three integers li, ri, xi.

For the i-th query find any position pi (li ≤ pi ≤ ri) so that api ≠ xi.

Input
The first line contains two integers n, m (1 ≤ n, m ≤ 2·105) — the number of elements in a and the number of queries.

The second line contains n integers ai (1 ≤ ai ≤ 106) — the elements of the array a.

Each of the next m lines contains three integers li, ri, xi (1 ≤ li ≤ ri ≤ n, 1 ≤ xi ≤ 106) — the parameters of the i-th query.

Output
Print m lines. On the i-th line print integer pi — the position of any number not equal to xi in segment [li, ri] or the value  - 1 if there is no such number.

Sample test(s)
input
6 4
1 2 1 1 3 5
1 4 1
2 6 2
3 4 1
3 4 2
output
2
6
-1
4

题意:
顾题思义,即给出一组数,并给出m个查询,每个查询分别由l,r,x三个数组成,表示在[l,r]范围内,求出与x值不相等的数的下标。
思路:
定义一个新数组sss存放原数组str中相等值与不等值的下标情况,sss[n] = n;当后一个数与当前数相等时,则下标与之一致,反之,当前数存放自身的下标。查询时效率就大大提高了。当str[l]的值不为x时,则输出该下标,否则,将sss[l]的值 + 1,如果此时的值小于r,则输出sss[l] + 1,否则输出-1,done。

#include<bits/stdc++.h>
using namespace std;
int main ()
{
    int n,m;
    while(cin>>n>>m)
    {
        int str[4400000];
        for(int i = 1;i <= n;i++)
            scanf("%d",&str[i]);
        int sss[4400000];
        sss[n] = n;
        for(int i = n - 1;i >= 0;i--)
        {
            if(str[i] == str[i + 1])
                sss[i] = sss[i + 1];
            else
                sss[i] = i;
        }
        while(m--)
        {
            int l,r,x;  scanf("%d %d %d",&l,&r,&x);
            if(str[l] != x)
                printf("%d\n",l);
            else
            {
                if(sss[l] + 1 <= r)
                    printf("%d\n",sss[l] + 1);
                else
                    printf("-1\n");
            }
        }
    }
    return 0;
}
目前关于 Codeforces Educational Round 179 的题解和比赛信息尚未在提供的引用中出现。根据 Codeforces 的常规更新频率以及比赛安排,Educational Rounds 通常会在比赛结束后不久发布官方题解,并且社区中也会有大量用户分享他们的解法和思路。 以下是一个通用的查找方法以及可能的题目类型解析: ### 查找方法 1. **访问 Codeforces 官方网站**:直接前往 Codeforces 的比赛页面,搜索 "Educational Round 179",查看是否已经有官方题解发布。 2. **参考社区资源**:如 AtCoder、TopCoder 或其他 OJ 平台上的用户题解,或者在社交媒体(如 Reddit、Stack Overflow)上查找相关讨论。 3. **使用搜索引擎**:输入关键词如 "Codeforces Educational Round 179 Editorial" 或 "Codeforces Educational Round 179 Solutions",查找博客、论坛等资源。 ### 可能的题目类型及解法示例 根据以往的 Educational Rounds 特点,以下是一些可能的题目类型及其常见解法: #### 1. **字符串处理** - **题目描述**:给定一个字符串,要求判断其是否满足某些条件或进行特定操作。 - **解法**: ```cpp #include <bits/stdc++.h> using namespace std; int main() { string s; cin >> s; // 示例:判断字符串是否为回文 bool is_palindrome = true; for (int i = 0; i < s.size() / 2; ++i) { if (s[i] != s[s.size() - i - 1]) { is_palindrome = false; break; } } cout << (is_palindrome ? "YES" : "NO") << endl; return 0; } ``` #### 2. **数学问题** - **题目描述**:涉及数论、组合数学或简单代数问题。 - **解法**: ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long n, k; cin >> n >> k; // 示例:判断 n 是否可以被 k 整除 cout << (n % k == 0 ? "YES" : "NO") << endl; return 0; } ``` #### 3. **贪心算法** - **题目描述**:通过局部最优解构造全局最优解。 - **解法**: ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int &x : a) cin >> x; sort(a.begin(), a.end()); // 示例:选择最大的元素 cout << a[n - 1] << endl; return 0; } ``` #### 4. **动态规划** - **题目描述**:需要通过状态转移方程解决的问题。 - **解法**: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1005; int dp[MAXN][MAXN]; int main() { int n; cin >> n; vector<int> a(n); for (int &x : a) cin >> x; // 初始化 for (int i = 0; i <= n; ++i) dp[i][i] = 0; // 状态转移 for (int len = 2; len <= n; ++len) { for (int i = 0; i + len - 1 < n; ++i) { int j = i + len - 1; dp[i][j] = max(a[i] - dp[i + 1][j], a[j] - dp[i][j - 1]); } } cout << dp[0][n - 1] << endl; return 0; } ``` ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值