[HDU - 5773] The All-purpose Zero(动态规划&&LIS)

本文介绍了一种解决最长递增子序列问题的算法,特别考虑了序列中0可以转换为任意整数的情况。通过记录0的数量并在计算过程中进行调整,最终得出最长递增子序列的长度。

Link:http://acm.hdu.edu.cn/showproblem.php?pid=5773

Problem Description

?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.

Input

The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.

Output

For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.

Sample Input

2
7
2 0 2 1 2 0 5
6
1 2 3 3 0 0

Sample Output

Case #1: 5
Case #2: 5

Hint

In the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.

题解:

题意就是0可以变成任何值 求LIS

步骤:

  1. b[i]==0时记下i之前0的个数, 记为k
  2. b[i]!=0时存在新数组a里,a[j++]=b[i]-k;
  3. ans = 新数组a的LIS+k

对于第2点,例如当数列为 1 0 0 0 2 时,LIS= 4(1 2 3 4 2),1、2 之间没有整数,2减去它前面0的个数为-1, (1 -1)的LIS=1,再加3可得LIS=4

Code:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#define INF 0x3f3f3f
using namespace std;
const int maxn=1e6+10;
int a[maxn];
int dp[maxn];
int b[maxn];
int main()
{
    int t,n,k,c=1;
    scanf("%d",&t);
    while(t--)
    {
        k=0;
        int j=0;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            scanf("%d",&b[i]);
            dp[i]=INF;
            if(b[i]==0)
            {
                k++;
            }

            else
            {
                b[i]-=k;
                a[j++]=b[i];
            }   
        }
        for(int i=0;i<j;i++)
            *lower_bound(dp,dp+n,a[i])=a[i];
        printf("Case #%d: %d\n",c++,lower_bound(dp,dp+n,INF)-dp+k);
    }
return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值