java NIO的使用越来重要,找个时间学习了一下进行一下Test
package com.test2;
import org.junit.Test;
import java.io.*;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.MappedByteBuffer;
import java.nio.channels.*;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.Date;
import java.util.Iterator;
import java.util.Scanner;
/**
* @program: test01
* @description:
* @author: houyu
* @create: 2019-02-24 16:17
*/
public class TestNIO {
/**
* 一、缓冲区(Buffer):在 Java NIO 中负责数据的存取。缓冲区就是数组。用于存储不同数据类型的数据
*
* 根据数据类型不同(boolean 除外),提供了相应类型的缓冲区:
* ByteBuffer
* CharBuffer
* ShortBuffer
* IntBuffer
* LongBuffer
* FloatBuffer
* DoubleBuffer
*
* 上述缓冲区的管理方式几乎一致,通过 allocate() 获取缓冲区
*
* 二、缓冲区存取数据的两个核心方法:
* put() : 存入数据到缓冲区中
* get() : 获取缓冲区中的数据
*
* 三、缓冲区中的四个核心属性:
* capacity : 容量,表示缓冲区中最大存储数据的容量。一旦声明不能改变。
* limit : 界限,表示缓冲区中可以操作数据的大小。(limit 后数据不能进行读写)
* position : 位置,表示缓冲区中正在操作数据的位置。
*
* mark : 标记,表示记录当前 position 的位置。可以通过 reset() 恢复到 mark 的位置
*
* 0 <= mark <= position <= limit <= capacity
*
* 四、直接缓冲区与非直接缓冲区:
* 非直接缓冲区:通过 allocate() 方法分配缓冲区,将缓冲区建立在 JVM 的内存中
* 直接缓冲区:通过 allocateDirect() 方法分配直接缓冲区,将缓冲区建立在物理内存中。可以提高效率
*/
@Test
public void testByteBuffer() throws UnsupportedEncodingException {
// 1.0 新建 非直接缓冲区,并指定大小
ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
// 2.0 往缓冲区put数据
byte[] src = "abcde".getBytes("UTF-8");
byteBuffer.put(src);
// 3.0 缓冲区get数据
// 3.1 切换为读取模式,实质的意思就是byteBuffer.position()修改为0,
byteBuffer.flip();
// 3.2 新建 byte[],数据存储到byte[]
byte[] dst = new byte[byteBuffer.limit()];// limit():实质缓冲区可读大小
byteBuffer.get(dst);
// 4.0 输出数据
System.out.println(new String(dst, "UTF-8"));
// 5.0 清空缓冲区. 但是缓冲区中的数据依然存在,但是处于“被遗忘”状态
byteBuffer.clear();
/**
* 补充:
* byteBuffer底层实质还是一个byte[] 查看源码得知final byte[] hb;
* 读取之前一定需要flip():目的是使得Buffer的属性position修改为0
* rewind()和flip()类似,都是position修改为0可以读取
*
* 创建直接缓冲区(调用的是操作系统的内存)
* ByteBuffer directByteBuffer = ByteBuffer.allocateDirect(1024);
*
* 以下两行代码可以优化
* byte[] dst = new byte[byteBuffer.limit()];
* byteBuffer.get(dst);
*
* byteBuffer.array():底层是返回byte[] hb;
*/
}
/**
* 一、通道(Channel):用于源节点与目标节点的连接。在 Java NIO 中负责缓冲区中数据的传输。Channel 本身不存储数据,因此需要配合缓冲区进行传输。
*
* 二、通道的主要实现类
* java.nio.channels.Channel 接口:
* |--FileChannel
* |--SocketChannel
* |--ServerSocketChannel
* |--DatagramChannel
*
* 三、获取通道
* 1. Java 针对支持通道的类提供了 getChannel() 方法
* 本地 IO:
* FileInputStream/FileOutputStream
* RandomAccessFile
*
* 网络IO:
* Socket
* ServerSocket
* DatagramSocket
*
* 2. 在 JDK 1.7 中的 NIO.2 针对各个通道提供了静态方法 open()
* 3. 在 JDK 1.7 中的 NIO.2 的 Files 工具类的 newByteChannel()
*
* 四、通道之间的数据传输
* transferFrom()
* transferTo()
*
* 五、分散(Scatter)与聚集(Gather)
* 分散读取(Scattering Reads):将通道中的数据分散到多个缓冲区中
* 聚集写入(Gathering Writes):将多个缓冲区中的数据聚集到通道中
*
* 六、字符集:Charset
* 编码:字符串 -> 字节数组
* 解码:字节数组 -> 字符串
*
*/
@Test
public void testChannelByFileInputStream() throws IOException {
// 1.0 获取文件输入流
FileInputStream inputStream = new FileInputStream("D:/1.txt");
// 2.0 文件输入流获取通道
FileChannel fileChannel = inputStream.getChannel();
// 3.0 读取文件信息
// 3.1 创建非直接缓冲区
ByteBuffer dst = ByteBuffer.allocate(1024);
while (fileChannel.read(dst) != -1){// 管道循环读取文件到缓冲区
dst.flip();// 读取文件必须要切换为读取模式
String tempString = new String(dst.array(), "GBK");
System.out.println(tempString);// window默认编码为GBK,否则乱码
}
// 4.0 关闭资源
fileChannel.close();
inputStream.close();
}
/**
* 通过缓冲区复制文件
*/
@Test
public void testChannelTOCopyFile_1() throws IOException {
// 1.0 获取流
FileInputStream inputStream = new FileInputStream("D:/1.txt");
FileOutputStream outputStream = new FileOutputStream("D:/2.txt");
// 2.0 流获取通道
FileChannel inChannel = inputStream.getChannel();
FileChannel outChannel = outputStream.getChannel();
// 3.0 创建非直接缓冲区
ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
// 4.0 inChannel读取文件到缓冲区并写入到outChannel
while (inChannel.read(byteBuffer) != -1){
byteBuffer.flip();
outChannel.write(byteBuffer);
byteBuffer.clear();
}
// 5.0 关闭资源
outChannel.close();
inputStream.close();
outChannel.close();
inputStream.close();
/**
* 补充:
* 这种复制文件使用的非直接缓冲区,速度方面比不上使用直接缓冲区
*/
}
/**
* 通过内存映射文件复制文件
*/
@Test
public void testChannelTOCopyFile_2() throws IOException {
// 使用FileChannel静态方法open()获取通道
FileChannel inChannel = FileChannel.open(Paths.get("D:/1.pdf"), StandardOpenOption.READ);
FileChannel outChannel = FileChannel.open(Paths.get("D:/2.pdf"), StandardOpenOption.WRITE, StandardOpenOption.READ, StandardOpenOption.CREATE);
// 获取内存映射文件
MappedByteBuffer inMappedBuffer = inChannel.map(FileChannel.MapMode.READ_ONLY, 0, inChannel.size());
MappedByteBuffer outMappedBuffer = outChannel.map(FileChannel.MapMode.READ_WRITE, 0, inChannel.size());
// 直接对缓冲区进行数据的读写操作
byte[] dst = new byte[inMappedBuffer.limit()];
inMappedBuffer.get(dst);
outMappedBuffer.put(dst);
// 关闭资源
outMappedBuffer.clear();
inMappedBuffer.clear();
outChannel.close();
inChannel.close();
}
/**
* 通过管道对管道复制文件
*/
@Test
public void testChannelTOCopyFile_3() throws IOException {
// 1.0 使用FileChannel静态方法open()获取通道
FileChannel inChannel = FileChannel.open(Paths.get("D:/1.pdf"), StandardOpenOption.READ);
FileChannel outChannel = FileChannel.open(Paths.get("D:/2.pdf"), StandardOpenOption.WRITE, StandardOpenOption.READ, StandardOpenOption.CREATE);
// 2.0 管道对接管道
inChannel.transferTo(0, inChannel.size(), outChannel);
// outChannel.transferFrom(inChannel, 0, inChannel.size());
// 3.0 关闭资源
inChannel.close();
outChannel.close();
}
/**
* 分散和聚集
*/
@Test
public void testScatterAndGather() throws IOException {
// 1.0 创建随机访问文件对象
RandomAccessFile randomAccessFile = new RandomAccessFile("D:/1.txt", "rw");
// 2.0 获取管道
FileChannel inChannel = randomAccessFile.getChannel();
// 3.0 创建指定大小的缓冲区
ByteBuffer buf1 = ByteBuffer.allocate(50);
ByteBuffer buf2 = ByteBuffer.allocate(1024);
ByteBuffer[] bufs = {buf1, buf2};
inChannel.read(bufs);
// 4.0 切换读模式
buf1.flip();
buf2.flip();
// 5.0 输出查看效果
System.out.println(new String(buf1.array()));
System.out.println("-----------------");
System.out.println(new String(buf2.array()));
// 6.0 创建输出随机访问对象
RandomAccessFile outFile = new RandomAccessFile("D:/2.txt", "rw");
// 7.0 获取管道
FileChannel outChannel = outFile.getChannel();
outChannel.write(bufs);
// 8.0 关闭资源
outChannel.close();
outFile.close();
buf2.clear();
buf1.clear();
inChannel.close();
randomAccessFile.close();
}
//字符集
@Test
public void testCharset() throws IOException{
Charset cs1 = Charset.forName("GBK");
//获取编码器
CharsetEncoder ce = cs1.newEncoder();
//获取解码器
CharsetDecoder cd = cs1.newDecoder();
CharBuffer cBuf = CharBuffer.allocate(1024);
cBuf.put("我是数据");
cBuf.flip();
//编码
ByteBuffer bBuf = ce.encode(cBuf);
for (int i = 0; i < 8; i++) {
System.out.println(bBuf.get());
}
//解码
bBuf.flip();
CharBuffer cBuf2 = cd.decode(bBuf);
System.out.println(cBuf2.toString());
}
/*
* 一、使用 NIO 完成网络通信的三个核心:
*
* 1. 通道(Channel):负责连接
*
* java.nio.channels.Channel 接口:
* |--SelectableChannel
* |--SocketChannel
* |--ServerSocketChannel
* |--DatagramChannel
*
* |--Pipe.SinkChannel
* |--Pipe.SourceChannel
*
* 2. 缓冲区(Buffer):负责数据的存取
*
* 3. 选择器(Selector):是 SelectableChannel 的多路复用器。用于监控 SelectableChannel 的 IO 状况
*
*/
//客户端
@Test
public void testBlockingNIOClient_1() throws IOException{
//1. 获取通道
SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 9898));
FileChannel inChannel = FileChannel.open(Paths.get("D:/1.txt"), StandardOpenOption.READ);
//2. 分配指定大小的缓冲区
ByteBuffer buf = ByteBuffer.allocate(1024);
//3. 读取本地文件,并发送到服务端
while(inChannel.read(buf) != -1){
buf.flip();
sChannel.write(buf);
buf.clear();
}
//4. 关闭通道
inChannel.close();
sChannel.close();
}
//服务端
@Test
public void testBlockingNIOServer_1() throws IOException{
//1. 获取通道
ServerSocketChannel ssChannel = ServerSocketChannel.open();
FileChannel outChannel = FileChannel.open(Paths.get("D:/2.txt"), StandardOpenOption.WRITE, StandardOpenOption.CREATE);
//2. 绑定连接
ssChannel.bind(new InetSocketAddress(9898));
//3. 获取客户端连接的通道
SocketChannel sChannel = ssChannel.accept();
//4. 分配指定大小的缓冲区
ByteBuffer buf = ByteBuffer.allocate(1024);
//5. 接收客户端的数据,并保存到本地
while(sChannel.read(buf) != -1){
buf.flip();
outChannel.write(buf);
buf.clear();
}
//6. 关闭通道
sChannel.close();
outChannel.close();
ssChannel.close();
}
//客户端
@Test
public void testBlockingNIOClient_2() throws IOException{
SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 9898));
FileChannel inChannel = FileChannel.open(Paths.get("1.jpg"), StandardOpenOption.READ);
ByteBuffer buf = ByteBuffer.allocate(1024);
while(inChannel.read(buf) != -1){
buf.flip();
sChannel.write(buf);
buf.clear();
}
sChannel.shutdownOutput();
//接收服务端的反馈
int len;
while((len = sChannel.read(buf)) != -1){
buf.flip();
System.out.println(new String(buf.array(), 0, len));
buf.clear();
}
inChannel.close();
sChannel.close();
}
//服务端
@Test
public void testBlockingNIOServer_2() throws IOException{
ServerSocketChannel ssChannel = ServerSocketChannel.open();
ssChannel.bind(new InetSocketAddress(9898));
FileChannel outChannel = FileChannel.open(Paths.get("2.jpg"), StandardOpenOption.WRITE, StandardOpenOption.CREATE);
SocketChannel sChannel = ssChannel.accept();
ByteBuffer buf = ByteBuffer.allocate(1024);
while(sChannel.read(buf) != -1){
buf.flip();
outChannel.write(buf);
buf.clear();
}
//发送反馈给客户端
buf.put("服务端接收数据成功".getBytes());
buf.flip();
sChannel.write(buf);
sChannel.close();
outChannel.close();
ssChannel.close();
}
//客户端
@Test
public void testNonBlockingNIOClient_1() throws IOException{
//1. 获取通道
SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 9898));
//2. 切换非阻塞模式
sChannel.configureBlocking(false);
//3. 分配指定大小的缓冲区
ByteBuffer buf = ByteBuffer.allocate(1024);
//4. 发送数据给服务端
Scanner scan = new Scanner(System.in);
while(scan.hasNext()){
String str = scan.next();
buf.put((new Date().toString() + "\n" + str).getBytes());
buf.flip();
sChannel.write(buf);
buf.clear();
}
//5. 关闭通道
sChannel.close();
}
//服务端
@Test
public void testNonBlockingNIOServer_1() throws IOException{
//1. 获取通道
ServerSocketChannel ssChannel = ServerSocketChannel.open();
//2. 切换非阻塞模式
ssChannel.configureBlocking(false);
//3. 绑定连接
ssChannel.bind(new InetSocketAddress(9898));
//4. 获取选择器
Selector selector = Selector.open();
//5. 将通道注册到选择器上, 并且指定“监听接收事件”
ssChannel.register(selector, SelectionKey.OP_ACCEPT);
//6. 轮询式的获取选择器上已经“准备就绪”的事件
while(selector.select() > 0){// 这个方法是阻塞的
//7. 获取当前选择器中所有注册的“选择键(已就绪的监听事件)”
Iterator<SelectionKey> it = selector.selectedKeys().iterator();
while(it.hasNext()){
//8. 获取准备“就绪”的是事件
SelectionKey sk = it.next();
//9. 判断具体是什么事件准备就绪
if(sk.isAcceptable()){
//10. 若“接收就绪”,获取客户端连接
SocketChannel sChannel = ssChannel.accept();
//11. 切换非阻塞模式
sChannel.configureBlocking(false);
//12. 将该通道注册到选择器上
sChannel.register(selector, SelectionKey.OP_READ);
}else if(sk.isReadable()){
//13. 获取当前选择器上“读就绪”状态的通道
SocketChannel sChannel = (SocketChannel) sk.channel();
//14. 读取数据
ByteBuffer buf = ByteBuffer.allocate(1024);
int len = 0;
while((len = sChannel.read(buf)) > 0 ){
buf.flip();
System.out.println(new String(buf.array(), 0, len));
buf.clear();
}
}
//15. 取消选择键 SelectionKey
it.remove();
}
}
}
@Test
public void testNonBlockingNIOSend_2() throws IOException{
DatagramChannel dc = DatagramChannel.open();
dc.configureBlocking(false);
ByteBuffer buf = ByteBuffer.allocate(1024);
Scanner scan = new Scanner(System.in);
while(scan.hasNext()){
String str = scan.next();
buf.put((new Date().toString() + ":\n" + str).getBytes());
buf.flip();
dc.send(buf, new InetSocketAddress("127.0.0.1", 9898));
buf.clear();
}
dc.close();
}
@Test
public void testNonBlockingNIOReceive_2() throws IOException{
DatagramChannel dc = DatagramChannel.open();
dc.configureBlocking(false);
dc.bind(new InetSocketAddress(9898));
Selector selector = Selector.open();
dc.register(selector, SelectionKey.OP_READ);
while(selector.select() > 0){
Iterator<SelectionKey> it = selector.selectedKeys().iterator();
while(it.hasNext()){
SelectionKey sk = it.next();
if(sk.isReadable()){
ByteBuffer buf = ByteBuffer.allocate(1024);
dc.receive(buf);
buf.flip();
System.out.println(new String(buf.array(), 0, buf.limit()));
buf.clear();
}
}
it.remove();
}
}
@Test
public void testPipe() throws IOException{
//1. 获取管道
Pipe pipe = Pipe.open();
//2. 将缓冲区中的数据写入管道
ByteBuffer buf = ByteBuffer.allocate(1024);
Pipe.SinkChannel sinkChannel = pipe.sink();
buf.put("通过单向管道发送数据".getBytes());
buf.flip();
sinkChannel.write(buf);
//3. 读取缓冲区中的数据
Pipe.SourceChannel sourceChannel = pipe.source();
buf.flip();
int len = sourceChannel.read(buf);
System.out.println(new String(buf.array(), 0, len));
sourceChannel.close();
sinkChannel.close();
}
}