02-线性结构4 Pop Sequence (25分)
灵感参考 《数据结构》02-线性结构4 Pop Sequence
题目
Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, …, N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.
Input Specification:
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.
Output Specification:
For each pop sequence, print in one line “YES” if it is indeed a possible pop sequence of the stack, or “NO” if not.
Sample Input:*
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
Sample Output:
YES
NO
NO
YES
NO
理解感悟
因为我之前没有搞过这种英文OJ的类型,所以真的是一脸懵逼……完全是看着分析网上大佬的分析来理解的,具体分析大佬的那篇文章写得更好
在这里我就手动罗列一个错误行输入的验证表格
例如:1 7 6 5 4 3 2
| 入栈 | 栈 | 数组 | cur | v[cur] | 出栈 |
|---|---|---|---|---|---|
| 1 | 1 | 1 7 6 5 4 3 2 | 1 | 1 | 1 |
| 2 | 2 | 1 7 6 5 4 3 2 | 2 | 7 | NULL |
| 3 | 2 3 | 1 7 6 5 4 3 2 | 2 | 7 | NULL |
| 4 | 2 3 4 | 1 7 6 5 4 3 2 | 2 | 7 | NULL |
| 5 | 2 3 4 5 | 1 7 6 5 4 3 2 | 2 | 7 | NULL |
| 6 | 2 3 4 5 6 | 1 7 6 5 4 3 2 | 2 | 7 | NULL |
| 7 | 2 3 4 5 6 7 FULL | – |
类似于这段,它的死因是因为栈满了,直接break掉了,而cur自然不可能等于n+1,所以终结了
具体代码实现
#include<iostream>
#include<vector>
#include<stack>
using namespace std;
int main(){
int m,n,k;
cin>>m>>n>>k;
for(int i=0;i<k;i++){
stack<int> s;
vector<int> v(n + 1);
//创建栈S和数组V,其中V使用1-n+1的空间位置
for(int j=1;j<=n;j++)
cin>>v[j];
int cur=1;
//因为使用1-n+1的位置,所以cur从1开始
for(int j=1;j<=n;j++){
s.push(j);
if(s.size() > m)
break;
while(!s.empty() && s.top()==v[cur]){
s.pop();
cur++;
}
}
if(cur == n+1)
//同上,如果正确的话,cur应指向数组最后一个下标(n+1)
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}
本文解析了一个算法问题,即如何判断给定的序列是否能通过一个最大容量为M的栈,按照1到N的顺序压入再随机弹出得到。文章通过样例输入输出,详细解释了算法的实现过程,包括栈的使用和序列验证。
608

被折叠的 条评论
为什么被折叠?



