kmeans++ python 对时间序列聚类/pandas列索引

estimator =KMeans(n_clusters=3,init = 'kmeans++')   #构造一个聚类数为5的聚类器,初始质心选取方式改为kmeans++
estimator.fit(data1)   #聚类
label_pred = estimator.labels_  #获取聚类标签
centroids = estimator.cluster_centers_ #获取聚类中心
print(label_pred)
#画图,每个类别画出一条线
for  i in range(len(label_pred)):
    if label_pred[i] == 0:
        x = [i for i in range(len(data1[1]))]
        plt.plot(x, data1[i], 'y')
    elif label_pred[i] == 1:
        x = [i for i in range(len(data1[1]))]
        plt.plot(x, data1[3], 'b')
    else:
        x = [i for i in range(len(data1[1]))]
        plt.plot(x, data1[i], 'r')

显示列索引
x = df.columns.values.tolist()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值