排序:将一组”无序“的记录列表调整为”有序“的列表
输入:列表
输出:有序列表
python内置排序函数sort()
冒泡排序思想
冒泡排序,类似于水中冒泡,较大的数沉下去,较小的数慢慢冒起来,假设从小到大,即为较大的数慢慢往后排,较小的数慢慢往前排。
直观表达,每一趟遍历,将一个最大的数移到序列末尾。
冒泡排序算法的原理如下:
1、比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2、对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
3、针对所有的元素重复以上的步骤,除了最后一个。
4、持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
冒泡排序代码
def bubble_sort(li):
for i in range(len(li) - 1):
exchange = False
for j in range(len(li) - i - 1):
if li[j] > li[j + 1]:
li[j], li[j + 1] = li[j + 1], li[j]
exchange = True
print(li)
if not exchange:
return
时间最差复杂度为o(n*n)
时间最优复杂度为o(n) ,主要是加入了exchange
稳定性:稳定
举例
假设待排序序列为 (5,1,4,2,8),如果采用冒泡排序对其进行升序(由小到大)排序,则整个排序过程如下所示:
- 第一轮排序,此时整个序列中的元素都位于待排序序列,依次扫描每对相邻的元素,并对顺序不正确的元素对交换位置,整个过程如图 1 所示。
图 1 第一轮排序(白色字体表示参与比较的一对相邻元素)
从图 1 可以看到,经过第一轮冒泡排序,从待排序序列中找出了最大数 8,并将其放到了待排序序列的尾部,并入已排序序列中。
- 第二轮排序,此时待排序序列只包含前 4 个元素,依次扫描每对相邻元素,对顺序不正确的元素对交换位置,整个过程如图 2 所示。
图 2 第二轮排序
可以看到,经过第二轮冒泡排序,从待排序序列中找出了最大数 5,并将其放到了待排序序列的尾部,并入已排序序列中。
- 第三轮排序,此时待排序序列包含前 3 个元素,依次扫描每对相邻元素,对顺序不正确的元素对交换位置,整个过程如图 3 所示。
图 3 第三轮排序
经过本轮冒泡排序,从待排序序列中找出了最大数 4,并将其放到了待排序序列的尾部,并入已排序序列中。
- 第四轮排序,此时待排序序列包含前 2 个元素,对其进行冒泡排序的整个过程如图 4 所示。
图 4 第四轮排序
经过本轮冒泡排序,从待排序序列中找出了最大数 2,并将其放到了待排序序列的尾部,并入已排序序列中。
- 当进行第五轮冒泡排序时,由于待排序序列中仅剩 1 个元素,无论再进行相邻元素的比较,因此直接将其并入已排序序列中,此时的序列就认定为已排序好的序列(如图 5 所示)。
图 5 冒泡排序好的序列
算法分析
最佳情况:T(n) = O(n), 如果元素本来就是有序的,那么一趟冒泡排序既可以完成排序工作,比较和移动元素的次数分别是n-1和0,因此最好情况的时间复杂度为O(n)
最差情况:T(n) = O(n^2), 如果数据元素本来就是逆序的,那么进行n-1趟排序,所需比较和移动次数分别为n(n-1)/2和3n(n-1)/2。因此最坏情况子下的时间复杂度为O(n^2)。
平均情况:T(n) = O(n^2)
稳定性:因为每次比较后如果两个相邻元素相等我们并不会将他们交换,所以冒泡不会改变相同元素的下标,所以冒泡排序是一个稳定的排序
空间复杂度: O(1)